Influence of Valve-Seat Angles to Operation Values and Emissions of Medium-Speed Diesel Engines

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-03-19 DOI:10.2478/ama-2023-0019
Leander Marquardt, Heiner-Joachim Katke, Andreas Reinke, Niklas Kockskämper
{"title":"Influence of Valve-Seat Angles to Operation Values and Emissions of Medium-Speed Diesel Engines","authors":"Leander Marquardt, Heiner-Joachim Katke, Andreas Reinke, Niklas Kockskämper","doi":"10.2478/ama-2023-0019","DOIUrl":null,"url":null,"abstract":"Abstract For the development of gas exchange for large diesel engines, a compromise has to be found between efficient valve-flow and the time between overhauls. On the one hand, large effective flow areas, especially during valve-overlap, are demanded. On the other hand, there are limitations of cylinder bore regarding the maximum diameter of inlet and outlet valves and the minimum distance (dead space) between valves and piston, as well as wear-related smaller seat angles. For large medium-speed diesel engines, a valve-seat angle of β = 30° for inlet and outlet valves is a standard application. For engine-operation with clean fuels, a valve-seat lubrication (gasoil) or smaller seat angles (natural gas) need to be applied. With this presentation, the basic influence of different valve-seat angles on the operation values and emissions will be considered for the example of the single-cylinder research engine FM16/24. Using a self-developed testbed, experimental investigations into effective flow areas as a function of valve-lift at inlet and outlet valves have to be executed. With this input, different cycle calculations including T/C have to be carried out to determine deviances in specific fuel-oil consumption, exhaust-gas temperatures, NOx emissions and air/fuel ratio. The results will be discussed critically.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract For the development of gas exchange for large diesel engines, a compromise has to be found between efficient valve-flow and the time between overhauls. On the one hand, large effective flow areas, especially during valve-overlap, are demanded. On the other hand, there are limitations of cylinder bore regarding the maximum diameter of inlet and outlet valves and the minimum distance (dead space) between valves and piston, as well as wear-related smaller seat angles. For large medium-speed diesel engines, a valve-seat angle of β = 30° for inlet and outlet valves is a standard application. For engine-operation with clean fuels, a valve-seat lubrication (gasoil) or smaller seat angles (natural gas) need to be applied. With this presentation, the basic influence of different valve-seat angles on the operation values and emissions will be considered for the example of the single-cylinder research engine FM16/24. Using a self-developed testbed, experimental investigations into effective flow areas as a function of valve-lift at inlet and outlet valves have to be executed. With this input, different cycle calculations including T/C have to be carried out to determine deviances in specific fuel-oil consumption, exhaust-gas temperatures, NOx emissions and air/fuel ratio. The results will be discussed critically.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中速柴油机气门座角对工况值及排放的影响
为了发展大型柴油机换气技术,必须在有效的阀流量和大修间隔时间之间找到一个折衷的办法。一方面,需要较大的有效过流面积,特别是在阀门重叠时。另一方面,对于进出口阀门的最大直径、阀门与活塞之间的最小距离(死空间)以及与磨损有关的较小的阀座角度,气缸内径存在限制。对于大型中速柴油机,进出气门的阀座角β = 30°是标准应用。对于使用清洁燃料的发动机,需要使用阀座润滑(汽油)或较小的阀座角度(天然气)。本报告将以单缸研究发动机FM16/24为例,研究不同阀座角度对发动机运行值和排放的基本影响。使用自行开发的测试平台,必须对进口和出口阀门的有效流动面积作为阀升程的函数进行实验研究。有了这些输入,必须进行不同的循环计算,包括温度/温度,以确定特定燃油消耗、废气温度、氮氧化物排放和空气/燃料比方面的偏差。结果将被批判性地讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1