{"title":"Bilayer structured coating for radiative cooling applications","authors":"Rongbing Wan, Zhihao Ma, Weiping Xu, Wenbo Zhao, Jingtao Xu, Ronggui Yang","doi":"10.1117/1.JPE.11.042109","DOIUrl":null,"url":null,"abstract":"Abstract. Daytime radiative cooling technology can cool objects to sub-ambient temperatures under direct sunlight without energy consumption. The technology relies on high reflectance of solar irradiation and high emissivity in the atmospheric window (infrared emission with 8 to 13 μm wavelengths). We report a bilayer structured coating for passive daytime sub-ambient radiative cooling. The bilayer radiative cooling coating has high solar reflectance (0.94), and high infrared emissivity (0.96) in the atmospheric window. The bilayer coating achieved a sub-ambient temperature of 3.6°C under solar irradiance of 990 W / m2 at an ambient temperature of 26.6°C, and the averaged sub-ambient cooling temperature of ∼8 ° C during the night. A test with two model rooms shows that the indoor air temperature reached a maximum difference of 9.7°C between the one with the bilayer coating and that with normal white coating.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"11 1","pages":"042109 - 042109"},"PeriodicalIF":1.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.11.042109","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Daytime radiative cooling technology can cool objects to sub-ambient temperatures under direct sunlight without energy consumption. The technology relies on high reflectance of solar irradiation and high emissivity in the atmospheric window (infrared emission with 8 to 13 μm wavelengths). We report a bilayer structured coating for passive daytime sub-ambient radiative cooling. The bilayer radiative cooling coating has high solar reflectance (0.94), and high infrared emissivity (0.96) in the atmospheric window. The bilayer coating achieved a sub-ambient temperature of 3.6°C under solar irradiance of 990 W / m2 at an ambient temperature of 26.6°C, and the averaged sub-ambient cooling temperature of ∼8 ° C during the night. A test with two model rooms shows that the indoor air temperature reached a maximum difference of 9.7°C between the one with the bilayer coating and that with normal white coating.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.