Hyperoxia and the cardiovascular system: experiences with hyperbaric oxygen therapy

IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Medical Gas Research Pub Date : 2022-04-17 DOI:10.4103/2045-9912.337997
J. Schipke, Thomas E. Muth, Clark Pepper, J. Schneppendahl, Martin A. Hoffmanns, Sven Dreyer
{"title":"Hyperoxia and the cardiovascular system: experiences with hyperbaric oxygen therapy","authors":"J. Schipke, Thomas E. Muth, Clark Pepper, J. Schneppendahl, Martin A. Hoffmanns, Sven Dreyer","doi":"10.4103/2045-9912.337997","DOIUrl":null,"url":null,"abstract":"Hyperoxia has been described to induce bradycardia by direct stimulation of the parasympathetic nervous system. Also, hyperoxia has been found to increase blood pressure by an elevation of vascular resistance. However, the latter effect itself would induce bradycardia by baroreceptor stimulation. This single-arm monocentric retrospective study aims to evaluate the correlation between these effects by investigating the relation between oxygen (O2) administration and heart rate over time. Data were collected from 23 patients without cardiovascular problems undergoing hyperbaric oxygen therapy (2.4 bar) retrospectively. During single oxygen bouts, transcutaneously measured partial pressure of O2 was increased. During this surge of oxygen pressure, the arterial blood pressure was increased while the heart rate was decreased. Respiration rate was maintained independently from breathing 100% O2 or air. During single oxygen bouts, the half-life of transcutaneously measured partial pressure of O2 was 5.4 ± 2.1 mmHg/s, and the half-life of heart rate was 0.45 ± 0.19 beats/min. It has been shown that hyperbaric oxygen therapy increases the transcutaneously measured partial pressure of O2. This increase was rather fast, followed by a rather slow decrease in HR. This finding does not support direct vagal activation. Heart rate is not decreased due to a direct vagal activation during hyperbaric oxygen therapy. Our single-arm, retrospective study has additionally confirmed that oxidative stress injures the endothelium, and the reduced endothelial-derived vasodilators cause vasoconstriction. As a consequence, blood pressure increases, and heart rate is then further decreased via the baroreceptor reflex.","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"12 1","pages":"153 - 157"},"PeriodicalIF":3.0000,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.337997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3

Abstract

Hyperoxia has been described to induce bradycardia by direct stimulation of the parasympathetic nervous system. Also, hyperoxia has been found to increase blood pressure by an elevation of vascular resistance. However, the latter effect itself would induce bradycardia by baroreceptor stimulation. This single-arm monocentric retrospective study aims to evaluate the correlation between these effects by investigating the relation between oxygen (O2) administration and heart rate over time. Data were collected from 23 patients without cardiovascular problems undergoing hyperbaric oxygen therapy (2.4 bar) retrospectively. During single oxygen bouts, transcutaneously measured partial pressure of O2 was increased. During this surge of oxygen pressure, the arterial blood pressure was increased while the heart rate was decreased. Respiration rate was maintained independently from breathing 100% O2 or air. During single oxygen bouts, the half-life of transcutaneously measured partial pressure of O2 was 5.4 ± 2.1 mmHg/s, and the half-life of heart rate was 0.45 ± 0.19 beats/min. It has been shown that hyperbaric oxygen therapy increases the transcutaneously measured partial pressure of O2. This increase was rather fast, followed by a rather slow decrease in HR. This finding does not support direct vagal activation. Heart rate is not decreased due to a direct vagal activation during hyperbaric oxygen therapy. Our single-arm, retrospective study has additionally confirmed that oxidative stress injures the endothelium, and the reduced endothelial-derived vasodilators cause vasoconstriction. As a consequence, blood pressure increases, and heart rate is then further decreased via the baroreceptor reflex.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高氧与心血管系统:高压氧治疗的经验
高氧已被描述为通过直接刺激副交感神经系统诱发心动过缓。此外,已发现高氧可通过血管阻力的升高而使血压升高。然而,后一种效应本身会通过压力感受器刺激诱发心动过缓。这项单臂单中心回顾性研究旨在通过调查氧(O2)给药与心率随时间的关系来评估这些影响之间的相关性。回顾性收集了23例接受高压氧治疗(2.4 bar)的无心血管问题患者的数据。单次给氧时,经皮测得的氧分压升高。在氧压激增期间,动脉血压升高,而心率降低。呼吸率维持独立于呼吸100% O2或空气。单次供氧时,经皮测得的O2分压半衰期为5.4±2.1 mmHg/s,心率半衰期为0.45±0.19次/min。研究表明,高压氧治疗可增加经皮测得的氧分压。这种增长相当快,随后人力资源下降相当缓慢。这一发现并不支持直接的迷走神经激活。在高压氧治疗期间,心率不会因为迷走神经的直接激活而降低。我们的单臂回顾性研究进一步证实,氧化应激损伤内皮,内皮来源的血管扩张剂减少导致血管收缩。结果,血压升高,然后通过压力感受器反射进一步降低心率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Gas Research
Medical Gas Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.10
自引率
13.80%
发文量
35
期刊介绍: Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1