Anesthetic gas consumption with target-controlled administration versus a semi-closed circle system with automatic end-tidal concentration control in an artificial lung model
M. Bellgardt, V. Vinnikov, A. Georgevici, Livia Procopiuc, T. Weber, A. Meiser, J. Herzog-Niescery, D. Drees
{"title":"Anesthetic gas consumption with target-controlled administration versus a semi-closed circle system with automatic end-tidal concentration control in an artificial lung model","authors":"M. Bellgardt, V. Vinnikov, A. Georgevici, Livia Procopiuc, T. Weber, A. Meiser, J. Herzog-Niescery, D. Drees","doi":"10.4103/2045-9912.337991","DOIUrl":null,"url":null,"abstract":"The use of volatile anesthetics as sedatives in the intensive care unit is relevant to the patient's outcome. We compared anesthetic gas consumption of the conventional semi-closed Aisys CS™ with the MIRUS™ system, which is the first anesthetic gas reflector system that can administer desflurane in addition to isoflurane and sevoflurane. We connected an artificial lung model to either a MIRUS™ system and a Puritan Bennett™ 840 ventilator or an Aisys CS™ anesthesia machine. We found that consumption of 0.5% isoflurane, which corresponds to the target concentration 0.5 MAC, was averaged to 2 mL/h in the MIRUS™ system, which is identical to the Aisys CS™ at a fresh gas flow (FGF) of 1.0 L/min. MIRUS™ consumption of 1% sevoflurane was averaged to 10 mL/h, which corresponds to 8.4 mL/h at FGF 2.5 L/min. The MIRUS™ system consumed 3% or 4% desflurane at an average of 13.0 mL/h or 21.3 mL/h, which is between the consumption at 1.0 L/min and 2.5 L/min FGF. Thus, the MIRUS™ system can effectively deliver volatile anesthetics in clinically relevant concentrations in a similar rate as a conventional circular breathing system at FGFs between 1.0 L/min and 2.5 L/min.","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"12 1","pages":"131 - 136"},"PeriodicalIF":3.0000,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.337991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of volatile anesthetics as sedatives in the intensive care unit is relevant to the patient's outcome. We compared anesthetic gas consumption of the conventional semi-closed Aisys CS™ with the MIRUS™ system, which is the first anesthetic gas reflector system that can administer desflurane in addition to isoflurane and sevoflurane. We connected an artificial lung model to either a MIRUS™ system and a Puritan Bennett™ 840 ventilator or an Aisys CS™ anesthesia machine. We found that consumption of 0.5% isoflurane, which corresponds to the target concentration 0.5 MAC, was averaged to 2 mL/h in the MIRUS™ system, which is identical to the Aisys CS™ at a fresh gas flow (FGF) of 1.0 L/min. MIRUS™ consumption of 1% sevoflurane was averaged to 10 mL/h, which corresponds to 8.4 mL/h at FGF 2.5 L/min. The MIRUS™ system consumed 3% or 4% desflurane at an average of 13.0 mL/h or 21.3 mL/h, which is between the consumption at 1.0 L/min and 2.5 L/min FGF. Thus, the MIRUS™ system can effectively deliver volatile anesthetics in clinically relevant concentrations in a similar rate as a conventional circular breathing system at FGFs between 1.0 L/min and 2.5 L/min.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.