{"title":"Reconstruct the AMSR-E/2 thin ice thickness algorithm to create a long-term time series of sea-ice production in Antarctic coastal polynyas","authors":"Sohey Nihashi , Kay I. Ohshima , Takeshi Tamura","doi":"10.1016/j.polar.2023.100978","DOIUrl":null,"url":null,"abstract":"<div><p>This study presented an extended time series of ice production in Antarctic coastal polynyas for 20 years of 2002–21 using high spatial resolution satellite data from passive microwave sensors: the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and the Advanced Microwave Scanning Radiometer 2 (AMSR2). For this, we reconstructed the previously presented thin ice thickness algorithms and re-estimated ice production by replacing atmospheric input data for the heat flux calculations with the newly released ECMWF Reanalysis v5 (ERA5). The consistency of ice production between AMSR-E and AMSR2, whose operation periods do not overlap, was confirmed from comparisons with ice production by the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS) with relatively coarse spatial resolution. The open ocean area, which cannot be detected from the thin ice thickness algorithm, was defined using sea-ice concentration (SIC) from AMSR-E and AMSR2. The satellite derived SIC has been suggested to be underestimated in the new thin ice (polynya) area. The effect of the underestimation on the ice production estimation was evaluated. The underestimation of SIC from three major algorithms was also investigated from comparisons with the thin ice thickness presented in this study. The coastal polynya dataset covering 20 years with the higher spatial resolution presented in this study is vital for climate-change-related studies.</p></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":"39 ","pages":"Article 100978"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1873965223000762/pdfft?md5=8c0ddd9a59863f7e45824e8733125115&pid=1-s2.0-S1873965223000762-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965223000762","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presented an extended time series of ice production in Antarctic coastal polynyas for 20 years of 2002–21 using high spatial resolution satellite data from passive microwave sensors: the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and the Advanced Microwave Scanning Radiometer 2 (AMSR2). For this, we reconstructed the previously presented thin ice thickness algorithms and re-estimated ice production by replacing atmospheric input data for the heat flux calculations with the newly released ECMWF Reanalysis v5 (ERA5). The consistency of ice production between AMSR-E and AMSR2, whose operation periods do not overlap, was confirmed from comparisons with ice production by the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS) with relatively coarse spatial resolution. The open ocean area, which cannot be detected from the thin ice thickness algorithm, was defined using sea-ice concentration (SIC) from AMSR-E and AMSR2. The satellite derived SIC has been suggested to be underestimated in the new thin ice (polynya) area. The effect of the underestimation on the ice production estimation was evaluated. The underestimation of SIC from three major algorithms was also investigated from comparisons with the thin ice thickness presented in this study. The coastal polynya dataset covering 20 years with the higher spatial resolution presented in this study is vital for climate-change-related studies.
期刊介绍:
Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication.
- Space and upper atmosphere physics
- Atmospheric science/climatology
- Glaciology
- Oceanography/sea ice studies
- Geology/petrology
- Solid earth geophysics/seismology
- Marine Earth science
- Geomorphology/Cenozoic-Quaternary geology
- Meteoritics
- Terrestrial biology
- Marine biology
- Animal ecology
- Environment
- Polar Engineering
- Humanities and social sciences.