T. Kunito, Naomi Hiruta, Yasunori Miyagishi, H. Sumi, Hitoshi Moro
{"title":"Changes in phosphorus fractions caused by increased microbial activity in forest soil in a short-term incubation study","authors":"T. Kunito, Naomi Hiruta, Yasunori Miyagishi, H. Sumi, Hitoshi Moro","doi":"10.1080/09542299.2018.1433555","DOIUrl":null,"url":null,"abstract":"Abstract The effects of adding larch (Larix kaempferi) leaf litter and nitrogen (N) on microbial activity and phosphorus (P) fractions in forest soil were examined in a short-term (28-d) laboratory incubation study. The soil was analyzed using a modified Hedley sequential extraction procedure and an acid phosphatase assay. The addition of larch litter and N increased the acid phosphatase activity and decreased the labile P (H2O-P + NaHCO3-P) concentration. Compared with addition of larch litter only, addition of both inputs decreased the proportion of inorganic P (Pi) and increased that of organic P (Po) in the NaOH fraction, bound to aluminum and iron oxides. The results of nutrient (carbon, N, or P) addition indicated that acid phosphatase was synthesized to acquire P. This study suggests that, in this forest soil, P in the H2O-P + NaHCO3-P and in the NaOH-Pi fractions was available for soil microorganisms to decompose leaf litter and that increase in microbial activity eventually translated in an increase in the proportion of Po found in the NaOH fraction in this forest soil.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"30 1","pages":"13 - 9"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2018.1433555","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2018.1433555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 18
Abstract
Abstract The effects of adding larch (Larix kaempferi) leaf litter and nitrogen (N) on microbial activity and phosphorus (P) fractions in forest soil were examined in a short-term (28-d) laboratory incubation study. The soil was analyzed using a modified Hedley sequential extraction procedure and an acid phosphatase assay. The addition of larch litter and N increased the acid phosphatase activity and decreased the labile P (H2O-P + NaHCO3-P) concentration. Compared with addition of larch litter only, addition of both inputs decreased the proportion of inorganic P (Pi) and increased that of organic P (Po) in the NaOH fraction, bound to aluminum and iron oxides. The results of nutrient (carbon, N, or P) addition indicated that acid phosphatase was synthesized to acquire P. This study suggests that, in this forest soil, P in the H2O-P + NaHCO3-P and in the NaOH-Pi fractions was available for soil microorganisms to decompose leaf litter and that increase in microbial activity eventually translated in an increase in the proportion of Po found in the NaOH fraction in this forest soil.
期刊介绍:
Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences.
Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”:
Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques.
Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products.
Mobility of substance species in environment and biota, either spatially or temporally.
Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions.
Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances.
Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity.
Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.