Melissa Jansing, Steffen Mielenbrink, Hannah Rosenbach, Sabine Metzger, Ingrid Span
{"title":"Maturation strategy influences expression levels and cofactor occupancy in Fe–S proteins","authors":"Melissa Jansing, Steffen Mielenbrink, Hannah Rosenbach, Sabine Metzger, Ingrid Span","doi":"10.1007/s00775-022-01972-1","DOIUrl":null,"url":null,"abstract":"<div><p>Iron–sulfur clusters are ubiquitous cofactors required for fundamental biological processes. Structural and spectroscopic analysis of Fe–S proteins is often limited by low cluster occupancy in recombinantly produced proteins. In this work, we report a systematic comparison of different maturation strategies for three well-established [4Fe–4S] proteins. Aconitase B, HMBPP reductase (IspH), and quinolinate synthase (NadA) were used as model proteins as they have previously been characterized. The protein production strategies include expression of the gene of interest in BL21(DE3) cells, maturation of the apo protein using chemical or semi-enzymatic reconstitution, co-expression with two different plasmids containing the iron–sulfur cluster (<i>isc</i>) or sulfur formation (<i>suf</i>) operon, a cell strain lacking IscR, the transcriptional regulator of the ISC machinery, and an engineered “SufFeScient” derivative of BL21(DE3). Our results show that co-expression of a Fe–S biogenesis pathway influences the protein yield and the cluster content of the proteins. The presence of the Fe–S cluster is contributing to correct folding and structural stability of the proteins. In vivo maturation reduces the formation of Fe–S aggregates, which occur frequently when performing chemical reconstitution. Furthermore, we show that the in vivo strategies can be extended to the radical SAM protein ThnB, which was previously only maturated by chemical reconstitution. Our results shed light on the differences of in vitro and in vivo Fe–S cluster maturation and points out the pitfalls of chemical reconstitution.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"28 2","pages":"187 - 204"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00775-022-01972-1.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JBIC Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s00775-022-01972-1","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Iron–sulfur clusters are ubiquitous cofactors required for fundamental biological processes. Structural and spectroscopic analysis of Fe–S proteins is often limited by low cluster occupancy in recombinantly produced proteins. In this work, we report a systematic comparison of different maturation strategies for three well-established [4Fe–4S] proteins. Aconitase B, HMBPP reductase (IspH), and quinolinate synthase (NadA) were used as model proteins as they have previously been characterized. The protein production strategies include expression of the gene of interest in BL21(DE3) cells, maturation of the apo protein using chemical or semi-enzymatic reconstitution, co-expression with two different plasmids containing the iron–sulfur cluster (isc) or sulfur formation (suf) operon, a cell strain lacking IscR, the transcriptional regulator of the ISC machinery, and an engineered “SufFeScient” derivative of BL21(DE3). Our results show that co-expression of a Fe–S biogenesis pathway influences the protein yield and the cluster content of the proteins. The presence of the Fe–S cluster is contributing to correct folding and structural stability of the proteins. In vivo maturation reduces the formation of Fe–S aggregates, which occur frequently when performing chemical reconstitution. Furthermore, we show that the in vivo strategies can be extended to the radical SAM protein ThnB, which was previously only maturated by chemical reconstitution. Our results shed light on the differences of in vitro and in vivo Fe–S cluster maturation and points out the pitfalls of chemical reconstitution.
期刊介绍:
Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.