Md Nasir Uddin, M. A. Alim, M. Karim, Md. Monjarul Alam
{"title":"Effect of aneurysmatic artery on blood flow having permeability in human organ","authors":"Md Nasir Uddin, M. A. Alim, M. Karim, Md. Monjarul Alam","doi":"10.3329/jname.v18i2.53624","DOIUrl":null,"url":null,"abstract":" Blood flow in a double aneurysmatic artery of the normal tissue is studied. A Finite Element method is used to analyze numerical simulation of blood flow through aneurysmatic arteries. The Newtonian, generalized Newtonian, Oldroyd-B and generalized Oldroyd-B models are considered due to the behavior of blood viscosity. In this paper, the effect of aneurysmatic artery on blood flow with permeability in human organ has been investigated. The non-Newtonian models have been applied to study the blood velocity, pressure, and wall shear stress in an aneurysmatic artery. A set of partial differential equations are transformed into dimensionless equations using non-dimensional variables and solved numerically. We have focused our consideration on the simulation of blood velocity and pressure in terms of blood flow rate for various Weissenberg numbers (Wi) and Peclet numbers (Pe). The important effects on blood flow of aneursymatic artery for blood velocity, pressure and wall stress profiles are presented graphically for Newtonian and non-Newtonian models. ","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.53624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Blood flow in a double aneurysmatic artery of the normal tissue is studied. A Finite Element method is used to analyze numerical simulation of blood flow through aneurysmatic arteries. The Newtonian, generalized Newtonian, Oldroyd-B and generalized Oldroyd-B models are considered due to the behavior of blood viscosity. In this paper, the effect of aneurysmatic artery on blood flow with permeability in human organ has been investigated. The non-Newtonian models have been applied to study the blood velocity, pressure, and wall shear stress in an aneurysmatic artery. A set of partial differential equations are transformed into dimensionless equations using non-dimensional variables and solved numerically. We have focused our consideration on the simulation of blood velocity and pressure in terms of blood flow rate for various Weissenberg numbers (Wi) and Peclet numbers (Pe). The important effects on blood flow of aneursymatic artery for blood velocity, pressure and wall stress profiles are presented graphically for Newtonian and non-Newtonian models.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.