Single-Cell Oil Production by Engineered Ashbya gossypii from Non-Detoxified Lignocellulosic Biomass Hydrolysate

IF 3.3 3区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Fermentation-Basel Pub Date : 2023-08-27 DOI:10.3390/fermentation9090791
Miguel Francisco, Tatiana Q. Aguiar, Gabriel Abreu, S. Marques, F. Girio, L. Domingues
{"title":"Single-Cell Oil Production by Engineered Ashbya gossypii from Non-Detoxified Lignocellulosic Biomass Hydrolysate","authors":"Miguel Francisco, Tatiana Q. Aguiar, Gabriel Abreu, S. Marques, F. Girio, L. Domingues","doi":"10.3390/fermentation9090791","DOIUrl":null,"url":null,"abstract":"In this work, microbial lipid production from non-detoxified Eucalyptus bark hydrolysate (EBH) with oleaginous xylose-utilizing Ashbya gossypii strains was explored. The best producing strain from a set of engineered strains was identified in synthetic media mimicking the composition of the non-detoxified EBH (SM), the lipid profile was characterized, and yeast extract and corn steep liquor (CSL) were pinpointed as supplements enabling a good balance between lipid accumulation, biomass production, and autolysis by A. gossypii. The potential of the engineered A. gossypii A877 strain to produce lipids was further validated and optimized with minimally processed inhibitor-containing hydrolysate and high sugar concentration, and scaled up in a 2 L bioreactor. Lipid production from non-detoxified EBH supplemented with CSL reached a lipid titer of 1.42 g/L, paving the way for sustainable single-cell oil production within the concept of circular economy and placing lipids as an alternative by-product within microbial biorefineries.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fermentation9090791","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, microbial lipid production from non-detoxified Eucalyptus bark hydrolysate (EBH) with oleaginous xylose-utilizing Ashbya gossypii strains was explored. The best producing strain from a set of engineered strains was identified in synthetic media mimicking the composition of the non-detoxified EBH (SM), the lipid profile was characterized, and yeast extract and corn steep liquor (CSL) were pinpointed as supplements enabling a good balance between lipid accumulation, biomass production, and autolysis by A. gossypii. The potential of the engineered A. gossypii A877 strain to produce lipids was further validated and optimized with minimally processed inhibitor-containing hydrolysate and high sugar concentration, and scaled up in a 2 L bioreactor. Lipid production from non-detoxified EBH supplemented with CSL reached a lipid titer of 1.42 g/L, paving the way for sustainable single-cell oil production within the concept of circular economy and placing lipids as an alternative by-product within microbial biorefineries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非脱毒木质纤维素生物质水解物制备工程棉蚜单细胞油
本研究探讨了桉树树皮非解毒水解物(EBH)与产油木糖利用的棉蚜(Ashbya gossypii)菌株的微生物脂质生产。在模拟未解毒EBH (SM)组成的合成培养基中,从一组工程菌株中鉴定出最佳生产菌株,对其脂质谱进行了表征,并确定酵母提取物和玉米浸泡液(CSL)作为补充物,可以在棉丝棉的脂质积累、生物量生产和自溶之间取得良好的平衡。进一步验证了工程棉蚜A877菌株生产脂质的潜力,并对其进行了低处理的含抑制剂水解产物和高糖浓度的优化,并在2 L生物反应器中进行了放大。添加CSL的非解毒EBH的脂质产量达到了1.42 g/L的脂质滴度,为循环经济概念下的可持续单细胞油生产铺平了道路,并将脂质作为微生物生物精炼厂的替代副产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fermentation-Basel
Fermentation-Basel BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
3.80
自引率
18.90%
发文量
594
审稿时长
7 weeks
期刊最新文献
The Application of Corynebacterium glutamicum in l-Threonine Biosynthesis Volatile Fatty Acid Recovery from Arrested Anaerobic Digestion for the Production of Sustainable Aviation Fuel: A Review Impact of Thermo-Mechanical Pretreatment of Sargassum muticum on Anaerobic Co-Digestion with Wheat Straw Solid-State Fermentation as a Sustainable Tool for Extracting Phenolic Compounds from Cascalote Pods Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1