{"title":"Performance evaluation of PI controller for positive output Luo converter","authors":"M. Ibrahim","doi":"10.11591/IJPEDS.V11.I4.PP1816-1825","DOIUrl":null,"url":null,"abstract":"The aim of this work is to design and analyze a Proportional Integral (PI) controller for Positive Output Luo Converter applications. Positive Output Luo Converter is a developed DC-DC converter. It is respected as a right choice for most industrial application where the rate of the output load voltage must be varying between the low and high values of the input value of voltage, output voltage rise and fall is smaller. This converter involve Power electronics switches (Diodes and MOSFET) since these elements are non-linear. The detailed model includes high-frequency switching that is introducing discontinuities into the model. PI controller coefficients (kp, ki) are calculated by particle swarm optimization (PSO) to provide optimal PI as hybrid PI by PSO controller with simple design procedure .Transient and steady state responses requirement of the system are considered in designing the proposed PI controller. The consequences show that the time of performing characteristics of PSO-PI controller established on integral squared error (ISE) performance index has the best time performing characteristics, line disturbance, load disturbance and set point variation.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"11 1","pages":"1816-1825"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V11.I4.PP1816-1825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 6
Abstract
The aim of this work is to design and analyze a Proportional Integral (PI) controller for Positive Output Luo Converter applications. Positive Output Luo Converter is a developed DC-DC converter. It is respected as a right choice for most industrial application where the rate of the output load voltage must be varying between the low and high values of the input value of voltage, output voltage rise and fall is smaller. This converter involve Power electronics switches (Diodes and MOSFET) since these elements are non-linear. The detailed model includes high-frequency switching that is introducing discontinuities into the model. PI controller coefficients (kp, ki) are calculated by particle swarm optimization (PSO) to provide optimal PI as hybrid PI by PSO controller with simple design procedure .Transient and steady state responses requirement of the system are considered in designing the proposed PI controller. The consequences show that the time of performing characteristics of PSO-PI controller established on integral squared error (ISE) performance index has the best time performing characteristics, line disturbance, load disturbance and set point variation.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.