{"title":"Faster MCMC for Gaussian latent position network models","authors":"Neil A. Spencer, B. Junker, T. Sweet","doi":"10.1017/nws.2022.1","DOIUrl":null,"url":null,"abstract":"Abstract Latent position network models are a versatile tool in network science; applications include clustering entities, controlling for causal confounders, and defining priors over unobserved graphs. Estimating each node’s latent position is typically framed as a Bayesian inference problem, with Metropolis within Gibbs being the most popular tool for approximating the posterior distribution. However, it is well-known that Metropolis within Gibbs is inefficient for large networks; the acceptance ratios are expensive to compute, and the resultant posterior draws are highly correlated. In this article, we propose an alternative Markov chain Monte Carlo strategy—defined using a combination of split Hamiltonian Monte Carlo and Firefly Monte Carlo—that leverages the posterior distribution’s functional form for more efficient posterior computation. We demonstrate that these strategies outperform Metropolis within Gibbs and other algorithms on synthetic networks, as well as on real information-sharing networks of teachers and staff in a school district.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":"10 1","pages":"20 - 45"},"PeriodicalIF":1.4000,"publicationDate":"2020-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2022.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Latent position network models are a versatile tool in network science; applications include clustering entities, controlling for causal confounders, and defining priors over unobserved graphs. Estimating each node’s latent position is typically framed as a Bayesian inference problem, with Metropolis within Gibbs being the most popular tool for approximating the posterior distribution. However, it is well-known that Metropolis within Gibbs is inefficient for large networks; the acceptance ratios are expensive to compute, and the resultant posterior draws are highly correlated. In this article, we propose an alternative Markov chain Monte Carlo strategy—defined using a combination of split Hamiltonian Monte Carlo and Firefly Monte Carlo—that leverages the posterior distribution’s functional form for more efficient posterior computation. We demonstrate that these strategies outperform Metropolis within Gibbs and other algorithms on synthetic networks, as well as on real information-sharing networks of teachers and staff in a school district.
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.