Comparative analysis of fruit firmness and genes associated with cell wall metabolisms in three cultivated strawberries during ripening and postharvest
{"title":"Comparative analysis of fruit firmness and genes associated with cell wall metabolisms in three cultivated strawberries during ripening and postharvest","authors":"Yi-Bo Ren, Bai-Jun Li, Hao-Ran Jia, Xiaofang Yang, Yunfan Sun, Jia-Han Shou, G. Jiang, Yanna Shi, Kun-song Chen","doi":"10.1093/fqsafe/fyad020","DOIUrl":null,"url":null,"abstract":"\n Cultivated strawberry (Fragaria × ananassa), a world-famous fruit, is subjected to rapid softening during ripening, resulting in a shorter shelf life and severe economic losses during storage and transportation. However, there is limited understanding of the molecular mechanism underlying differences in fruit firmness during ripening and postharvest among cultivated strawberries. Here, we explored this molecular mechanism by comparing three cultivated strawberries via firmness measurement, transcriptome analysis, quantitative real-time PCR, and correlation analysis, and revealed that FaEXP7, FaPG2, FaPLA, and Faβ-Gal4, as potential softening activators expressed before harvest to determine fruit with more softened texture and shorter shelf life, and the extremely high expression levels of FaCEL1-1 and FaCEL1-3 during ripening might be accelerators to intensify this situation. Additionally, both the enzyme activities of FaCEL and the expression pattern of FaCEL1-3 showed a significantly negative correlation with fruit firmness after harvest, suggesting that FaCEL1-3 might play a key role in promoting strawberry fruit softening not only during ripening but also postharvest. These results showed that the difference in fruit firmness and shelf life among cultivated strawberries was controlled by the temporal expression pattern of a legion of cell wall-associated genes during ripening and postharvest.","PeriodicalId":12427,"journal":{"name":"Food Quality and Safety","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Quality and Safety","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/fqsafe/fyad020","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cultivated strawberry (Fragaria × ananassa), a world-famous fruit, is subjected to rapid softening during ripening, resulting in a shorter shelf life and severe economic losses during storage and transportation. However, there is limited understanding of the molecular mechanism underlying differences in fruit firmness during ripening and postharvest among cultivated strawberries. Here, we explored this molecular mechanism by comparing three cultivated strawberries via firmness measurement, transcriptome analysis, quantitative real-time PCR, and correlation analysis, and revealed that FaEXP7, FaPG2, FaPLA, and Faβ-Gal4, as potential softening activators expressed before harvest to determine fruit with more softened texture and shorter shelf life, and the extremely high expression levels of FaCEL1-1 and FaCEL1-3 during ripening might be accelerators to intensify this situation. Additionally, both the enzyme activities of FaCEL and the expression pattern of FaCEL1-3 showed a significantly negative correlation with fruit firmness after harvest, suggesting that FaCEL1-3 might play a key role in promoting strawberry fruit softening not only during ripening but also postharvest. These results showed that the difference in fruit firmness and shelf life among cultivated strawberries was controlled by the temporal expression pattern of a legion of cell wall-associated genes during ripening and postharvest.
期刊介绍:
Food quality and safety are the main targets of investigation in food production. Therefore, reliable paths to detect, identify, quantify, characterize and monitor quality and safety issues occurring in food are of great interest.
Food Quality and Safety is an open access, international, peer-reviewed journal providing a platform to highlight emerging and innovative science and technology in the agro-food field, publishing up-to-date research in the areas of food quality and safety, food nutrition and human health. It promotes food and health equity which will consequently promote public health and combat diseases.
The journal is an effective channel of communication between food scientists, nutritionists, public health professionals, food producers, food marketers, policy makers, governmental and non-governmental agencies, and others concerned with the food safety, nutrition and public health dimensions.
The journal accepts original research articles, review papers, technical reports, case studies, conference reports, and book reviews articles.