Machine Learning-Based Predictions of Benefits of High Thermal Conductivity Encapsulation Materials for Power Electronics Packaging

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Packaging Pub Date : 2021-10-25 DOI:10.1115/1.4052814
Palash V. Acharya, Manojkumar Lokanathan, A. Ouroua, R. Hebner, S. Strank, V. Bahadur
{"title":"Machine Learning-Based Predictions of Benefits of High Thermal Conductivity Encapsulation Materials for Power Electronics Packaging","authors":"Palash V. Acharya, Manojkumar Lokanathan, A. Ouroua, R. Hebner, S. Strank, V. Bahadur","doi":"10.1115/1.4052814","DOIUrl":null,"url":null,"abstract":"\n Machine learning (ML)-based predictive techniques are used in conjunction with a game-theoretic approach to predict the thermal behavior of a power electronics package and study the relative influence of encapsulation material properties and thermal management in influencing hotspot temperatures. Parametric steady-state and transient thermal simulations are conducted for a commercially available 1.2 kV/444 A SiC half-bridge module. An extensive databank of 2592 (steady-state) and 1200 (transient) data points generated via numerical simulations is used to train and evaluate the performance of three ML algorithms (random forest, support vector machine and neural network) in modeling the thermal behavior. The parameter space includes the thermal conductivities of the encapsulant, baseplate, heat sink and cooling conditions deployed at the sink; the parametric space covers a variety of materials and cooling scenarios. Excellent prediction accuracies with R2 values > 99.5% are obtained for the algorithms. SHAP (Shapley Additive exPlanations) dependence plots are used to quantify the relative impact of device and heat sink parameters on junction temperatures. We observe that while heatsink cooling conditions significantly influence the steady-state junction temperature, their contribution in determining the junction temperature in dynamic mode is diminished. Using ML-SHAP models, we quantify the impact of emerging polymeric nanocomposites (with high conductivities and diffusivities) on hotspot temperature reduction, with the device operating in static and dynamic modes. Overall, this study highlights the attractiveness of ML-based approaches for thermal design, and provides a framework for setting targets for future encapsulation materials.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4052814","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

Abstract

Machine learning (ML)-based predictive techniques are used in conjunction with a game-theoretic approach to predict the thermal behavior of a power electronics package and study the relative influence of encapsulation material properties and thermal management in influencing hotspot temperatures. Parametric steady-state and transient thermal simulations are conducted for a commercially available 1.2 kV/444 A SiC half-bridge module. An extensive databank of 2592 (steady-state) and 1200 (transient) data points generated via numerical simulations is used to train and evaluate the performance of three ML algorithms (random forest, support vector machine and neural network) in modeling the thermal behavior. The parameter space includes the thermal conductivities of the encapsulant, baseplate, heat sink and cooling conditions deployed at the sink; the parametric space covers a variety of materials and cooling scenarios. Excellent prediction accuracies with R2 values > 99.5% are obtained for the algorithms. SHAP (Shapley Additive exPlanations) dependence plots are used to quantify the relative impact of device and heat sink parameters on junction temperatures. We observe that while heatsink cooling conditions significantly influence the steady-state junction temperature, their contribution in determining the junction temperature in dynamic mode is diminished. Using ML-SHAP models, we quantify the impact of emerging polymeric nanocomposites (with high conductivities and diffusivities) on hotspot temperature reduction, with the device operating in static and dynamic modes. Overall, this study highlights the attractiveness of ML-based approaches for thermal design, and provides a framework for setting targets for future encapsulation materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的电力电子封装高导热封装材料效益预测
基于机器学习(ML)的预测技术结合博弈论方法来预测电力电子封装的热行为,并研究封装材料性能和热管理对热点温度的相对影响。对市售的1.2 kV/444 a SiC半桥模块进行了参数稳态和瞬态热模拟。通过数值模拟生成的2592(稳态)和1200(瞬态)数据点的广泛数据库用于训练和评估三种ML算法(随机森林,支持向量机和神经网络)在模拟热行为方面的性能。参数空间包括所述密封剂、底板、散热器的导热系数以及所述散热器处布置的冷却条件;参数化空间涵盖了多种材料和冷却场景。结果表明,该算法具有较好的预测精度,R2值为> ~ 99.5%。SHAP (Shapley Additive exPlanations)依赖性图用于量化器件和散热器参数对结温的相对影响。我们观察到,虽然散热器冷却条件显著影响稳态结温,但它们在确定动态模式结温方面的贡献减弱了。使用ML-SHAP模型,我们量化了新兴的聚合物纳米复合材料(具有高导电性和扩散性)对热点温度降低的影响,设备在静态和动态模式下运行。总的来说,这项研究突出了基于ml的热设计方法的吸引力,并为未来封装材料的目标设定提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Packaging
Journal of Electronic Packaging 工程技术-工程:电子与电气
CiteScore
4.90
自引率
6.20%
发文量
44
审稿时长
3 months
期刊介绍: The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems. Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.
期刊最新文献
Simultaneous Characterization of Both Ctes and Thermal Warpages of Flip-Chip Packages with a Cap Using Strain Gauges Research Status and Progress On Non-Destructive Testing Methods for Defect Inspection of Microelectronic Packaging Effects of Thermal-Moisture Coupled Field On Delamination Behavior of Electronic Packaging Heat Dissipation Design Based On Topology Optimization And Auxiliary Materials Optimal Design of Thermal Cycling Reliability For PBGA Assembly via FEM and Taguchi Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1