{"title":"Numerical Investigation of Production-Related Characteristics Regarding their Influence on the Fatigue Strength of Additively Manufactured Components","authors":"M. Zeißig, F. Jablonski","doi":"10.2478/ama-2023-0033","DOIUrl":null,"url":null,"abstract":"Abstract In order to further enhance the application of additive manufacturing (AM) processes, such as the laser powder bed fusion (L-PBF) process, reliable material data are required. However, the resulting specimen properties are significantly influenced by the process parameters and may also vary depending on the material used. Therefore, the prediction of the final properties is difficult. In the following, the effect of residual stresses on the fatigue strength of 316L steel, a commonly used steel in AM, is investigated using a Weibull distribution. The underlying residual stress distributions as a result of the building process are approximated for two building directions using finite element (FE) models. These imply significantly different distributions of tensile and compressive residual stresses within the component. Apart from the residual stresses, the impact of the mean stress sensitivity is discussed as this also influences the predicted fatigue strength values.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In order to further enhance the application of additive manufacturing (AM) processes, such as the laser powder bed fusion (L-PBF) process, reliable material data are required. However, the resulting specimen properties are significantly influenced by the process parameters and may also vary depending on the material used. Therefore, the prediction of the final properties is difficult. In the following, the effect of residual stresses on the fatigue strength of 316L steel, a commonly used steel in AM, is investigated using a Weibull distribution. The underlying residual stress distributions as a result of the building process are approximated for two building directions using finite element (FE) models. These imply significantly different distributions of tensile and compressive residual stresses within the component. Apart from the residual stresses, the impact of the mean stress sensitivity is discussed as this also influences the predicted fatigue strength values.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.