{"title":"Pig face recognition based on improved YOLOv4 lightweight neural network","authors":"","doi":"10.1016/j.inpa.2023.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>With the vigorous development of intelligence agriculture, the progress of automated large-scale and intensive pig farming has accelerated significantly. As a biological feature, the pig face has important research significance for precise breeding of pigs and traceability of health. In the management of live pigs, many managers adopt traditional methods, including color marking and RFID identification, but there will be problems such as off-label, mixed-label and waste of manpower. This work proposes a non-invasive way to study the identification of multiple individuals in pigs. The model was to first replace the original backbone network of YOLOv4 with MobileNet-v3, a popular lightweight network. Then depth-wise separable convolution was adopted in YOLOv4′s feature extraction network SPP and PANet to further reduce network parameters. Moreover, CBAM attention mechanism formed by the concatenation of CAM and SAM was added to PANet to ensure the network accuracy while reducing the model weight. The introduction of multi-attention mechanism selectively strengthened key areas of pig face and filtered out weak correlation features, so as to improve the overall model effect. Finally, an improved MobileNetv3-YOLOv4-PACNet (M-YOLOv4-C) network model was proposed to identify individual sows. The mAP were 98.15 %, the detection speed FPS were 106.3frames/s, and the model parameter size was only 44.74 MB, which can be well implanted into the small-volume pig house management sensors and applied to the pig management system in a lightweight, fast and accurate manner. This model will provide model support for subsequent pig behavior recognition and posture analysis.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 356-371"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000483/pdfft?md5=15cedd90f8b826def2e4ca0a3a7b3834&pid=1-s2.0-S2214317323000483-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317323000483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the vigorous development of intelligence agriculture, the progress of automated large-scale and intensive pig farming has accelerated significantly. As a biological feature, the pig face has important research significance for precise breeding of pigs and traceability of health. In the management of live pigs, many managers adopt traditional methods, including color marking and RFID identification, but there will be problems such as off-label, mixed-label and waste of manpower. This work proposes a non-invasive way to study the identification of multiple individuals in pigs. The model was to first replace the original backbone network of YOLOv4 with MobileNet-v3, a popular lightweight network. Then depth-wise separable convolution was adopted in YOLOv4′s feature extraction network SPP and PANet to further reduce network parameters. Moreover, CBAM attention mechanism formed by the concatenation of CAM and SAM was added to PANet to ensure the network accuracy while reducing the model weight. The introduction of multi-attention mechanism selectively strengthened key areas of pig face and filtered out weak correlation features, so as to improve the overall model effect. Finally, an improved MobileNetv3-YOLOv4-PACNet (M-YOLOv4-C) network model was proposed to identify individual sows. The mAP were 98.15 %, the detection speed FPS were 106.3frames/s, and the model parameter size was only 44.74 MB, which can be well implanted into the small-volume pig house management sensors and applied to the pig management system in a lightweight, fast and accurate manner. This model will provide model support for subsequent pig behavior recognition and posture analysis.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining