Computing quantities of interest and their uncertainty using Bayesian simulation

IF 2.5 2区 社会学 Q1 POLITICAL SCIENCE Political Science Research and Methods Pub Date : 2022-04-26 DOI:10.1017/psrm.2022.18
A. Murr, Richard Traunmüller, J. Gill
{"title":"Computing quantities of interest and their uncertainty using Bayesian simulation","authors":"A. Murr, Richard Traunmüller, J. Gill","doi":"10.1017/psrm.2022.18","DOIUrl":null,"url":null,"abstract":"\n When analyzing data, researchers are often less interested in the parameters of statistical models than in functions of these parameters such as predicted values. Here we show that Bayesian simulation with Markov-Chain Monte Carlo tools makes it easy to compute these quantities of interest with their uncertainty. We illustrate how to produce customary and relatively new quantities of interest such as variable importance ranking, posterior predictive data, difficult marginal effects, and model comparison statistics to allow researchers to report more informative results.","PeriodicalId":47311,"journal":{"name":"Political Science Research and Methods","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Science Research and Methods","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/psrm.2022.18","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

When analyzing data, researchers are often less interested in the parameters of statistical models than in functions of these parameters such as predicted values. Here we show that Bayesian simulation with Markov-Chain Monte Carlo tools makes it easy to compute these quantities of interest with their uncertainty. We illustrate how to produce customary and relatively new quantities of interest such as variable importance ranking, posterior predictive data, difficult marginal effects, and model comparison statistics to allow researchers to report more informative results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用贝叶斯模拟计算兴趣量及其不确定性
在分析数据时,研究人员往往对统计模型的参数不太感兴趣,而更感兴趣的是这些参数的函数,如预测值。在这里,我们展示了使用马尔可夫链蒙特卡罗工具的贝叶斯模拟可以很容易地计算这些具有不确定性的感兴趣量。我们说明了如何产生习惯的和相对较新的兴趣量,如变量重要性排名、后验预测数据、困难边际效应和模型比较统计,以允许研究人员报告更多信息的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
54
期刊最新文献
Partisan communication in two-stage elections: the effect of primaries on intra-campaign positional shifts in congressional elections Election symbols and vote choice: evidence from India Local elections do not increase local news demand The (in)effectiveness of populist rhetoric: a conjoint experiment of campaign messaging Evaluating methods for examining the relative persuasiveness of policy arguments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1