GRSR - a guideline for reporting studies results for machine learning applied to Electroencephalogram data

IF 0.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Revista Brasileira de Computacao Aplicada Pub Date : 2023-07-27 DOI:10.5335/rbca.v15i2.14338
I. D. Rodrigues, Juciara da Costa Silva, Emerson A. Carvalho, Vinícius de Almeida Paiva, Caio P. Santana, Sabrina de Azevedo Silveira, Guilherme Sousa Bastos
{"title":"GRSR - a guideline for reporting studies results for machine learning applied to Electroencephalogram data","authors":"I. D. Rodrigues, Juciara da Costa Silva, Emerson A. Carvalho, Vinícius de Almeida Paiva, Caio P. Santana, Sabrina de Azevedo Silveira, Guilherme Sousa Bastos","doi":"10.5335/rbca.v15i2.14338","DOIUrl":null,"url":null,"abstract":"Background: The last decade was marked by increased neuroscience research involving machine Learning (ML) and medical images such as functional magnetic resonance and electroencephalogram (EEG). There are many challenges in this research field, including the need for more data and a standard for presenting the results. Since ML models tend to be sensitive to the input data, different strategies for data acquisition, preprocessing, feature selection, and validation significantly impact the results achieved. Therefore, a significant variation while presenting the results makes it challenging to compare the results. Results: This work aims to tackle the lack of a standard model by presenting a guideline, conform Quadas-2, that covers the most critical data for studies to demonstrate when using EEG and ML for addressing neurological disorders. Conclusions: This guideline allows a structural presentation of the primary data of studies using ML applied to EEG, improving comparison between studies while also allowing fair comparisons.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/rbca.v15i2.14338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The last decade was marked by increased neuroscience research involving machine Learning (ML) and medical images such as functional magnetic resonance and electroencephalogram (EEG). There are many challenges in this research field, including the need for more data and a standard for presenting the results. Since ML models tend to be sensitive to the input data, different strategies for data acquisition, preprocessing, feature selection, and validation significantly impact the results achieved. Therefore, a significant variation while presenting the results makes it challenging to compare the results. Results: This work aims to tackle the lack of a standard model by presenting a guideline, conform Quadas-2, that covers the most critical data for studies to demonstrate when using EEG and ML for addressing neurological disorders. Conclusions: This guideline allows a structural presentation of the primary data of studies using ML applied to EEG, improving comparison between studies while also allowing fair comparisons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习应用于脑电图数据的研究结果报告指南
背景:在过去的十年里,神经科学的研究越来越多,涉及机器学习(ML)和医学图像,如功能性磁共振和脑电图(EEG)。这一研究领域存在许多挑战,包括需要更多的数据和呈现结果的标准。由于ML模型往往对输入数据敏感,不同的数据采集、预处理、特征选择和验证策略会显著影响所获得的结果。因此,在呈现结果时存在显著差异,因此比较结果具有挑战性。结果:这项工作旨在通过提出一个符合Quadas-2的指南来解决缺乏标准模型的问题,该指南涵盖了研究在使用脑电图和ML治疗神经系统疾病时需要证明的最关键数据。结论:该指南允许对应用于脑电图的ML研究的主要数据进行结构呈现,改善了研究之间的比较,同时也允许进行公平的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Brasileira de Computacao Aplicada
Revista Brasileira de Computacao Aplicada COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
50.00%
发文量
18
期刊最新文献
GRSR - a guideline for reporting studies results for machine learning applied to Electroencephalogram data Detecção e alerta de equipamentos não permitidos em quartos hospitalares por meio da supervisão da corrente elétrica Otimização inspirada na interação ecológica de predação do gato em relação ao rato aplicada ao problema da múltipla mochila 0-1 Classificação de sinais de voz para auxílio no diagnóstico da doença de Parkinson Authorship attribution of comments in Portuguese extracted from Reddit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1