Evolutionary Algorithm for Selecting Dynamic Signatures Partitioning Approach

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Artificial Intelligence and Soft Computing Research Pub Date : 2022-10-01 DOI:10.2478/jaiscr-2022-0018
Marcin Zalasiński, Łukasz Laskowski, Tacjana Niksa-Rynkiewicz, K. Cpałka, A. Byrski, Krzysztof Przybyszewski, Paweł Trippner, Shiquan Dong
{"title":"Evolutionary Algorithm for Selecting Dynamic Signatures Partitioning Approach","authors":"Marcin Zalasiński, Łukasz Laskowski, Tacjana Niksa-Rynkiewicz, K. Cpałka, A. Byrski, Krzysztof Przybyszewski, Paweł Trippner, Shiquan Dong","doi":"10.2478/jaiscr-2022-0018","DOIUrl":null,"url":null,"abstract":"Abstract In the verification of identity, the aim is to increase effectiveness and reduce involvement of verified users. A good compromise between these issues is ensured by dynamic signature verification. The dynamic signature is represented by signals describing the position of the stylus in time. They can be used to determine the velocity or acceleration signal. Values of these signals can be analyzed, interpreted, selected, and compared. In this paper, we propose an approach that: (a) uses an evolutionary algorithm to create signature partitions in the time and velocity domains; (b) selects the most characteristic partitions in terms of matching with reference signatures; and (c) works individually for each user, eliminating the need of using skilled forgeries. The proposed approach was tested using Biosecure DS2 database which is a part of the DeepSignDB, a database with genuine dynamic signatures. Our simulations confirmed the correctness of the adopted assumptions.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"12 1","pages":"267 - 279"},"PeriodicalIF":3.3000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2478/jaiscr-2022-0018","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In the verification of identity, the aim is to increase effectiveness and reduce involvement of verified users. A good compromise between these issues is ensured by dynamic signature verification. The dynamic signature is represented by signals describing the position of the stylus in time. They can be used to determine the velocity or acceleration signal. Values of these signals can be analyzed, interpreted, selected, and compared. In this paper, we propose an approach that: (a) uses an evolutionary algorithm to create signature partitions in the time and velocity domains; (b) selects the most characteristic partitions in terms of matching with reference signatures; and (c) works individually for each user, eliminating the need of using skilled forgeries. The proposed approach was tested using Biosecure DS2 database which is a part of the DeepSignDB, a database with genuine dynamic signatures. Our simulations confirmed the correctness of the adopted assumptions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择动态签名的进化算法划分方法
摘要在身份验证中,目的是提高有效性,减少被验证用户的参与。动态签名验证确保了这些问题之间的良好折衷。动态签名由描述触笔在时间上的位置的信号来表示。它们可以用于确定速度或加速度信号。这些信号的值可以被分析、解释、选择和比较。在本文中,我们提出了一种方法:(a)使用进化算法在时间域和速度域中创建签名分区;(b) 根据与参考签名的匹配来选择最具特征的分区;以及(c)为每个用户单独工作,消除了使用熟练伪造品的需要。所提出的方法使用Biosecure DS2数据库进行了测试,该数据库是DeepSignDB的一部分,DeepSignDB是一个具有真正动态签名的数据库。我们的模拟证实了所采用的假设的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Artificial Intelligence and Soft Computing Research
Journal of Artificial Intelligence and Soft Computing Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.00
自引率
25.00%
发文量
10
审稿时长
24 weeks
期刊介绍: Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.
期刊最新文献
Bending Path Understanding Based on Angle Projections in Field Environments Self-Organized Operational Neural Networks for The Detection of Atrial Fibrillation Interpreting Convolutional Layers in DNN Model Based on Time–Frequency Representation of Emotional Speech A Few-Shot Learning Approach for Covid-19 Diagnosis Using Quasi-Configured Topological Spaces Metrics for Assessing Generalization of Deep Reinforcement Learning in Parameterized Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1