Kaixin sun, Ben Whiteside, Michael Hebda, Yiqiang Fan, Yajun Zhang, Yumeng Xie, KunMing Liang
{"title":"A low-cost and hand-hold PCR microdevice based on water-cooling technology","authors":"Kaixin sun, Ben Whiteside, Michael Hebda, Yiqiang Fan, Yajun Zhang, Yumeng Xie, KunMing Liang","doi":"10.1007/s10544-023-00652-4","DOIUrl":null,"url":null,"abstract":"<div><p>Polymerase chain reaction (PCR) has become a powerful tool for detecting various diseases due to its high sensitivity and specificity. However, the long thermocycling time and the bulky system have limited the application of PCR devices in Point-of-care testing. Herein, we have proposed an efficient, low-cost, and hand-hold PCR microdevice, mainly including a control module based on water-cooling technology and an amplification module fabricated by 3D printing. The whole device is tiny and can be easily hand-held with a size of about 110 mm × 100 mm × 40 mm and a weight of about 300 g at a low cost of about $170.83. Based on the water-cooling technology, the device can efficiently perform 30 thermal cycles within 46 min at a heating/cooling rate of 4.0/8.1 ℃/s. To test our instrument, plasmid DNA dilutions were amplified with this device; the results demonstrate successful nucleic acid amplification of the plasmid DNA and exhibit the promise of this device for Point-of-care testing.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-023-00652-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00652-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polymerase chain reaction (PCR) has become a powerful tool for detecting various diseases due to its high sensitivity and specificity. However, the long thermocycling time and the bulky system have limited the application of PCR devices in Point-of-care testing. Herein, we have proposed an efficient, low-cost, and hand-hold PCR microdevice, mainly including a control module based on water-cooling technology and an amplification module fabricated by 3D printing. The whole device is tiny and can be easily hand-held with a size of about 110 mm × 100 mm × 40 mm and a weight of about 300 g at a low cost of about $170.83. Based on the water-cooling technology, the device can efficiently perform 30 thermal cycles within 46 min at a heating/cooling rate of 4.0/8.1 ℃/s. To test our instrument, plasmid DNA dilutions were amplified with this device; the results demonstrate successful nucleic acid amplification of the plasmid DNA and exhibit the promise of this device for Point-of-care testing.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.