Accurate measurement of the loss rate of cold atoms due to background gas collisions for the quantum-based cold atom vacuum standard

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY AVS quantum science Pub Date : 2023-02-23 DOI:10.1116/5.0147686
D. Barker, J. Fedchak, J. Kłos, J. Scherschligt, A. A. Sheikh, E. Tiesinga, S. Eckel
{"title":"Accurate measurement of the loss rate of cold atoms due to background gas collisions for the quantum-based cold atom vacuum standard","authors":"D. Barker, J. Fedchak, J. Kłos, J. Scherschligt, A. A. Sheikh, E. Tiesinga, S. Eckel","doi":"10.1116/5.0147686","DOIUrl":null,"url":null,"abstract":"We present the measurements of thermalized collisional rate coefficients for ultra-cold 7Li and 87Rb colliding with room-temperature He, Ne, N2, Ar, Kr, and Xe. In our experiments, a combined flowmeter and dynamic expansion system, a vacuum metrology standard, is used to set a known number density for the room-temperature background gas in the vicinity of the magnetically trapped 7Li or 87Rb clouds. Each collision with a background atom or molecule removes a 7Li or 87Rb atom from its trap, and the change in the atom loss rate with background gas density is used to determine the thermalized loss rate coefficients with fractional standard uncertainties better than 1.6% for 7Li and 2.7% for 87Rb. We find consistency—a degree of equivalence of less than one—between the measurements and recent quantum-scattering calculations of the loss rate coefficients [Kłos and Tiesinga, J. Chem. Phys. 158, 014308 (2023)], with the exception of the loss rate coefficient for both 7Li and 87Rb colliding with Ar. Nevertheless, the agreement between theory and experiment for all other studied systems provides validation that a quantum-based measurement of vacuum pressure using cold atoms also serves as a primary standard for vacuum pressure, which we refer to as the cold-atom vacuum standard.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0147686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present the measurements of thermalized collisional rate coefficients for ultra-cold 7Li and 87Rb colliding with room-temperature He, Ne, N2, Ar, Kr, and Xe. In our experiments, a combined flowmeter and dynamic expansion system, a vacuum metrology standard, is used to set a known number density for the room-temperature background gas in the vicinity of the magnetically trapped 7Li or 87Rb clouds. Each collision with a background atom or molecule removes a 7Li or 87Rb atom from its trap, and the change in the atom loss rate with background gas density is used to determine the thermalized loss rate coefficients with fractional standard uncertainties better than 1.6% for 7Li and 2.7% for 87Rb. We find consistency—a degree of equivalence of less than one—between the measurements and recent quantum-scattering calculations of the loss rate coefficients [Kłos and Tiesinga, J. Chem. Phys. 158, 014308 (2023)], with the exception of the loss rate coefficient for both 7Li and 87Rb colliding with Ar. Nevertheless, the agreement between theory and experiment for all other studied systems provides validation that a quantum-based measurement of vacuum pressure using cold atoms also serves as a primary standard for vacuum pressure, which we refer to as the cold-atom vacuum standard.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子冷原子真空标准中背景气体碰撞导致冷原子损失率的精确测量
我们给出了超冷7Li和87Rb与室温He, Ne, N2, Ar, Kr和Xe碰撞的热化碰撞速率系数的测量结果。在我们的实验中,我们使用一个组合流量计和动态膨胀系统,一个真空计量标准,来设定一个已知的数字密度在室温背景气体附近的磁捕获7Li或87Rb云。每次与背景原子或分子的碰撞都会使7Li或87Rb原子从其陷阱中移除,原子损失率随背景气体密度的变化用于确定热化损失率系数,其分数标准不确定度优于7Li的1.6%和87Rb的2.7%。我们在测量结果和最近的损失率系数的量子散射计算[Kłos和Tiesinga, J. Chem]之间发现了一致性——小于1的等效程度。物理学报,158,014308(2023)],除了7Li和87Rb与Ar碰撞的损失率系数。然而,所有其他研究系统的理论和实验之间的一致性提供了验证,即使用冷原子对真空压力的基于量子的测量也可以作为真空压力的主要标准,我们称之为冷原子真空标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
期刊最新文献
Sub-nanosecond coherent optical manipulation of a single aromatic molecule at cryogenic temperature Single-photon-based clock analysis and recovery in quantum key distribution Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions Estimation of the number of single-photon emitters for multiple fluorophores with the same spectral signature Efficient numerical description of the dynamics of interacting multispecies quantum gases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1