Rhys Taylor Lemoine , Robert Buitenwerf , Jens-Christian Svenning
{"title":"Megafauna extinctions in the late-Quaternary are linked to human range expansion, not climate change","authors":"Rhys Taylor Lemoine , Robert Buitenwerf , Jens-Christian Svenning","doi":"10.1016/j.ancene.2023.100403","DOIUrl":null,"url":null,"abstract":"<div><p>The Earth has lost approximately half of its large mammal species (≥45 kg, one-third of species ≥9 kg) over the past 120,000 years, resulting in depauperate megafauna communities worldwide. Despite substantial interest and debate for over a century, the reasons for these exceptionally high extinction rates and major transformation of the biosphere remain contested. The predominant explanations are climate change, hunting by modern humans (<em>Homo sapiens</em>), or a combination of both. To evaluate the evidence for each hypothesis, statistical models were constructed to test the predictive power of prehistoric human and hominin presence and migration on megafauna extinction severity and on extinction bias toward larger species. Models with anthropic predictors were compared to models that considered late-Quaternary (120–0 kya) climate change and it was found that models including human factors outperformed all purely climatic models. These results thus support an overriding impact of <em>Homo sapiens</em> on megafauna extinctions. Given the disproportionate impact of large-bodied animals on vegetation structure, plant dispersal, nutrient cycling and co-dependent biota, this simplification and downsizing of mammal faunas worldwide represents the first planetary-scale, human-driven transformation of the environment.</p></div>","PeriodicalId":56021,"journal":{"name":"Anthropocene","volume":"44 ","pages":"Article 100403"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anthropocene","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221330542300036X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Earth has lost approximately half of its large mammal species (≥45 kg, one-third of species ≥9 kg) over the past 120,000 years, resulting in depauperate megafauna communities worldwide. Despite substantial interest and debate for over a century, the reasons for these exceptionally high extinction rates and major transformation of the biosphere remain contested. The predominant explanations are climate change, hunting by modern humans (Homo sapiens), or a combination of both. To evaluate the evidence for each hypothesis, statistical models were constructed to test the predictive power of prehistoric human and hominin presence and migration on megafauna extinction severity and on extinction bias toward larger species. Models with anthropic predictors were compared to models that considered late-Quaternary (120–0 kya) climate change and it was found that models including human factors outperformed all purely climatic models. These results thus support an overriding impact of Homo sapiens on megafauna extinctions. Given the disproportionate impact of large-bodied animals on vegetation structure, plant dispersal, nutrient cycling and co-dependent biota, this simplification and downsizing of mammal faunas worldwide represents the first planetary-scale, human-driven transformation of the environment.
AnthropoceneEarth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.30
自引率
0.00%
发文量
27
审稿时长
102 days
期刊介绍:
Anthropocene is an interdisciplinary journal that publishes peer-reviewed works addressing the nature, scale, and extent of interactions that people have with Earth processes and systems. The scope of the journal includes the significance of human activities in altering Earth’s landscapes, oceans, the atmosphere, cryosphere, and ecosystems over a range of time and space scales - from global phenomena over geologic eras to single isolated events - including the linkages, couplings, and feedbacks among physical, chemical, and biological components of Earth systems. The journal also addresses how such alterations can have profound effects on, and implications for, human society. As the scale and pace of human interactions with Earth systems have intensified in recent decades, understanding human-induced alterations in the past and present is critical to our ability to anticipate, mitigate, and adapt to changes in the future. The journal aims to provide a venue to focus research findings, discussions, and debates toward advancing predictive understanding of human interactions with Earth systems - one of the grand challenges of our time.