Discussion of “A selective review of statistical methods using calibration information from similar studies” and some remarks on data integration

IF 0.7 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2022-05-19 DOI:10.1080/24754269.2022.2075083
J. Lawless
{"title":"Discussion of “A selective review of statistical methods using calibration information from similar studies” and some remarks on data integration","authors":"J. Lawless","doi":"10.1080/24754269.2022.2075083","DOIUrl":null,"url":null,"abstract":"Qin, Liu and Li (henceforth QLL) review methods for combining information using empirical likelihood and related approaches; many of these ideas originated in the earlier work of Jing Qin. I thank the authors for their review, and for the opportunity to contribute to its discussion. I have little to say about technical aspects, which are well established but will comment briefly on broader aspects of data integration, and implications for methods like those in the article. I will focus on settings where there is a response variable Y and covariates X , Z and assume the target of inference is either the distribution f ( y | x , z ) of Y given X , Z or the ‘marginal’ distribution f m ( y | x ) of Y given X . In health research Y might represent (time to) the occurrence of some specific event, and X , Z covariates, exposures or interventions. The distribution f ( y | x , z ) is important for individual-level decisions; in settings where X represents interventions f m ( y | x ) is relevant in randomized trials and comparative effectiveness research. The authors consider two main topics in data integration: (i) the use of external auxiliary data to augment the analysis of a specific ‘internal’ study, and (ii) the combination of data from separate studies with a view to for common parameters or They focus on where,","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"191 - 192"},"PeriodicalIF":0.7000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2022.2075083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Qin, Liu and Li (henceforth QLL) review methods for combining information using empirical likelihood and related approaches; many of these ideas originated in the earlier work of Jing Qin. I thank the authors for their review, and for the opportunity to contribute to its discussion. I have little to say about technical aspects, which are well established but will comment briefly on broader aspects of data integration, and implications for methods like those in the article. I will focus on settings where there is a response variable Y and covariates X , Z and assume the target of inference is either the distribution f ( y | x , z ) of Y given X , Z or the ‘marginal’ distribution f m ( y | x ) of Y given X . In health research Y might represent (time to) the occurrence of some specific event, and X , Z covariates, exposures or interventions. The distribution f ( y | x , z ) is important for individual-level decisions; in settings where X represents interventions f m ( y | x ) is relevant in randomized trials and comparative effectiveness research. The authors consider two main topics in data integration: (i) the use of external auxiliary data to augment the analysis of a specific ‘internal’ study, and (ii) the combination of data from separate studies with a view to for common parameters or They focus on where,
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于“利用类似研究的校准信息选择性审查统计方法”的讨论和对数据整合的一些评论
Qin,Liu和Li(以下简称QLL)使用经验似然和相关方法结合信息的审查方法;这些思想很多都源于景勤早期的著作。我感谢作者的评论,并感谢他们有机会为讨论做出贡献。关于技术方面,我几乎没有什么要说的,这些方面已经确立,但我将简要评论数据集成的更广泛方面,以及对本文中的方法的影响。我将重点讨论存在响应变量Y和协变量X、Z的设置,并假设推理的目标是给定X、Z时Y的分布f(Y|X,Z)或给定X时Y的“边际”分布f m(Y|X)。在健康研究中,Y可能代表(到)某个特定事件的发生,X、Z可能代表协变量、暴露或干预。分布f(y|x,z)对于个体水平的决策是重要的;在X代表干预措施的环境中,f m(y|X)在随机试验和比较有效性研究中是相关的。作者考虑了数据整合中的两个主要主题:(i)使用外部辅助数据来增强对特定“内部”研究的分析,以及(ii)将来自单独研究的数据进行组合,以获得共同的参数,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1