MOLECULAR DYNAMIC SIMULATION OF PLASMA MATERIAL INTERACTION TOCALCULATE THEORETICAL SPUTTERING YIELD

Pahsa Alper
{"title":"MOLECULAR DYNAMIC SIMULATION OF PLASMA MATERIAL INTERACTION TOCALCULATE THEORETICAL SPUTTERING YIELD","authors":"Pahsa Alper","doi":"10.31489/2023no2/127-137","DOIUrl":null,"url":null,"abstract":"In a fusion reaction two light nuclei, Deuterium and Tritium merge to form a single heavier nucleus Helium. However, two positive nuclei repel each other. In order to merge two nuclei they need to have very high velocities. High speed means, high temperature. For the reaction it is significant for a nuclei to keep at 100 million °C temperature. At this temperature D and T atoms form a plasma. In order the reaction to take place, the plasma temperature must be conserved or plasma should not be cooled. Tokamak reactors are designed to confine the plasma in a magnetic field. Thus, the cooling of the plasma is prevented by hitting the reactor walls. Plasma density and temperature must be at a certain level in order to initiate the reaction and to ensure continuity. During the reaction process, positive and negative ions escaping from the magnetic field environment interact with Tokamak walls and cause deformation. This causes the plasma wall to deteriorate over time and the release of neutrons to the environment. Plasma-Wall interaction is one of the most important problems that cause interruption of fusion in Tokamak rectors. The materials which most resistant to ion corrosion in the plasma wall are graphite, beryllium, aluminium and tungsten. In this work, plasma-material interaction is studied theoretically physical and chemical erosion caused by the plasma interactions of different wall material samples (graphite, aluminium and Tungsten) used in the fusion reactor and investigated with the Monte Carlo method with molecular dynamics.","PeriodicalId":11789,"journal":{"name":"Eurasian Physical Technical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Physical Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023no2/127-137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In a fusion reaction two light nuclei, Deuterium and Tritium merge to form a single heavier nucleus Helium. However, two positive nuclei repel each other. In order to merge two nuclei they need to have very high velocities. High speed means, high temperature. For the reaction it is significant for a nuclei to keep at 100 million °C temperature. At this temperature D and T atoms form a plasma. In order the reaction to take place, the plasma temperature must be conserved or plasma should not be cooled. Tokamak reactors are designed to confine the plasma in a magnetic field. Thus, the cooling of the plasma is prevented by hitting the reactor walls. Plasma density and temperature must be at a certain level in order to initiate the reaction and to ensure continuity. During the reaction process, positive and negative ions escaping from the magnetic field environment interact with Tokamak walls and cause deformation. This causes the plasma wall to deteriorate over time and the release of neutrons to the environment. Plasma-Wall interaction is one of the most important problems that cause interruption of fusion in Tokamak rectors. The materials which most resistant to ion corrosion in the plasma wall are graphite, beryllium, aluminium and tungsten. In this work, plasma-material interaction is studied theoretically physical and chemical erosion caused by the plasma interactions of different wall material samples (graphite, aluminium and Tungsten) used in the fusion reactor and investigated with the Monte Carlo method with molecular dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体与材料相互作用的分子动力学模拟计算理论溅射产额
在聚变反应中,两个轻原子核氘和氚合并形成一个重原子核氦。然而,两个正核相互排斥。为了合并两个原子核,它们需要有非常高的速度。高速意味着高温。对于反应来说,原子核保持在1亿°C的温度是很重要的。在这个温度下,D和T原子形成等离子体。为了使反应发生,必须保持等离子体温度,或者不应冷却等离子体。托卡马克反应堆的设计目的是将等离子体限制在磁场中。因此,通过撞击反应器壁来防止等离子体的冷却。等离子体密度和温度必须处于一定水平,以启动反应并确保连续性。在反应过程中,从磁场环境中逸出的正负离子与托卡马克壁相互作用并引起变形。这会导致等离子体壁随着时间的推移而退化,并将中子释放到环境中。等离子体-壁相互作用是造成托卡马克反应器融合中断的最重要问题之一。等离子体壁中最耐离子腐蚀的材料是石墨、铍、铝和钨。本工作从理论上研究了聚变反应器中使用的不同壁材料样品(石墨、铝和钨)的等离子体相互作用引起的等离子体-材料相互作用的物理和化学侵蚀,并用分子动力学的蒙特卡罗方法进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
15
期刊最新文献
AUTOMATED CONTROL OFTHE THIN FILMS ELECTRICALCONDUCTIVITY BY THE EDDY CURRENT METHOD SIMULATION OF MULTIPOINT CONTACT UNDER THERMOELECTRIC TESTING TUDY OF THE INFLUENCE OF THE ACCUMULATED DOSE OF DAMAGE IN THE NEAR-SURFACE LAYER ON RESISTANCE TO EXTERNAL INFLUENCES ASSOCIATED WITH CORROSION PROCESSES DURING HIGH-TEMPERATURE ANNEALING Методика измерения диэлектрических коэффициентов полярных жидкостей в диапазоне микроволн ANALYSIS OF METHODS FOR SIMULATING THE DECAY HEAT IN CORIUM WHEN MODELING A SEVERE ACCIDENTS AT NUCLEAR POWER PLANT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1