Investigation of Structure Formation and Tribotechnical Properties of Steel Plasma Coatings After Chemical-Heat Treatment and Liquid-Phase Impregnation
R. Mediukh, V. Mediukh, V. Labunets, P. Nosko, O. Bashta, I. Kondratenko
{"title":"Investigation of Structure Formation and Tribotechnical Properties of Steel Plasma Coatings After Chemical-Heat Treatment and Liquid-Phase Impregnation","authors":"R. Mediukh, V. Mediukh, V. Labunets, P. Nosko, O. Bashta, I. Kondratenko","doi":"10.2478/ama-2022-0045","DOIUrl":null,"url":null,"abstract":"Abstract The paper is focused on the studies of the microstructure development and physical and mechanical properties of metal-matrix composite coatings based on steel 11Cr18MoWCu deposited using plasma and galvanoplasma methods. The expediency of combining gas-thermal spraying processes of plasma coatings with open porosity up to 16%–18%, with their subsequent thermodiffusion saturation (chromium plating) or liquid-phase impregnation with eutectic alloys of previously applied Ni–B galvanic layer, is shown. The study of the tribotechnical properties of the proposed coatings showed a significant improvement in their performance under conditions of various types of intensive wear, as well as in corrosive environments.","PeriodicalId":44942,"journal":{"name":"Acta Mechanica et Automatica","volume":"16 1","pages":"382 - 387"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica et Automatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2022-0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The paper is focused on the studies of the microstructure development and physical and mechanical properties of metal-matrix composite coatings based on steel 11Cr18MoWCu deposited using plasma and galvanoplasma methods. The expediency of combining gas-thermal spraying processes of plasma coatings with open porosity up to 16%–18%, with their subsequent thermodiffusion saturation (chromium plating) or liquid-phase impregnation with eutectic alloys of previously applied Ni–B galvanic layer, is shown. The study of the tribotechnical properties of the proposed coatings showed a significant improvement in their performance under conditions of various types of intensive wear, as well as in corrosive environments.