{"title":"ESAR, An Expert Shoplifting Activity Recognition System","authors":"Mohd. Aquib Ansari, D. Singh","doi":"10.2478/cait-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract Shoplifting is a troubling and pervasive aspect of consumers, causing great losses to retailers. It is the theft of goods from the stores/shops, usually by hiding the store item either in the pocket or in carrier bag and leaving without any payment. Revenue loss is the most direct financial effect of shoplifting. Therefore, this article introduces an Expert Shoplifting Activity Recognition (ESAR) system to reduce shoplifting incidents in stores/shops. The system being proposed seamlessly examines each frame in video footage and alerts security personnel when shoplifting occurs. It uses dual-stream convolutional neural network to extract appearance and salient motion features in the video sequences. Here, optical flow and gradient components are used to extract salient motion features related to shoplifting movement in the video sequence. Long Short Term Memory (LSTM) based deep learner is modeled to learn the extracted features in the time domain for distinguishing person actions (i.e., normal and shoplifting). Analyzing the model behavior for diverse modeling environments is an added contribution of this paper. A synthesized shoplifting dataset is used here for experimentations. The experimental outcomes show that the proposed approach attains better consequences up to 90.26% detection accuracy compared to the other prevalent approaches.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9
Abstract
Abstract Shoplifting is a troubling and pervasive aspect of consumers, causing great losses to retailers. It is the theft of goods from the stores/shops, usually by hiding the store item either in the pocket or in carrier bag and leaving without any payment. Revenue loss is the most direct financial effect of shoplifting. Therefore, this article introduces an Expert Shoplifting Activity Recognition (ESAR) system to reduce shoplifting incidents in stores/shops. The system being proposed seamlessly examines each frame in video footage and alerts security personnel when shoplifting occurs. It uses dual-stream convolutional neural network to extract appearance and salient motion features in the video sequences. Here, optical flow and gradient components are used to extract salient motion features related to shoplifting movement in the video sequence. Long Short Term Memory (LSTM) based deep learner is modeled to learn the extracted features in the time domain for distinguishing person actions (i.e., normal and shoplifting). Analyzing the model behavior for diverse modeling environments is an added contribution of this paper. A synthesized shoplifting dataset is used here for experimentations. The experimental outcomes show that the proposed approach attains better consequences up to 90.26% detection accuracy compared to the other prevalent approaches.