Crystal Size Dependence of the Photo-Electrochemical Water Oxidation on Nanoparticulate CaTiO3

IF 2.7 4区 化学 Q3 CHEMISTRY, PHYSICAL Electrocatalysis Pub Date : 2022-12-19 DOI:10.1007/s12678-022-00801-y
Monika Klusáčková, Roman Nebel, Kateřina Minhová Macounová, Petr Krtil
{"title":"Crystal Size Dependence of the Photo-Electrochemical Water Oxidation on Nanoparticulate CaTiO3","authors":"Monika Klusáčková,&nbsp;Roman Nebel,&nbsp;Kateřina Minhová Macounová,&nbsp;Petr Krtil","doi":"10.1007/s12678-022-00801-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocrystalline CaTiO<sub>3</sub> materials with controlled particle size were prepared using spray-freezing/freeze-drying approach utilizing gelatine as a structure-directing agent. The resulting materials show characteristic particle size between 19 and 60 nm. The shape of the nanocrystals changes from cube-like single crystal containing particles into less regular isometric particles. Prepared materials as identified by X-ray diffraction analysis are formed by orthorhombic perovskite with small admixture of cubic phase. The ratio of both perovskite phases is independent of the particle size or prevailing crystal shape. All prepared materials show n-semiconducting character with band gap of ca 3.6 eV. They also show photo-electrochemical activity in water oxidation in acid media if a bias greater than 400 mV with respect to the flat band potential is applied. The specific photo-electrochemical activity decreases with increasing specific surface area. This behavior is attributed to increased probability of the electron transfer at the illuminated CaTiO<sub>3</sub> surface facilitated by the surface states. The CaTiO<sub>3</sub> materials also generate significant amount of ozone upon illumination in oxygen saturated solutions. The tendency to form ozone increases with increasing particle size suggesting that the ozone formation is hindered on materials with large number of low dimensionality states (crystal edges and vertices).</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-022-00801-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocrystalline CaTiO3 materials with controlled particle size were prepared using spray-freezing/freeze-drying approach utilizing gelatine as a structure-directing agent. The resulting materials show characteristic particle size between 19 and 60 nm. The shape of the nanocrystals changes from cube-like single crystal containing particles into less regular isometric particles. Prepared materials as identified by X-ray diffraction analysis are formed by orthorhombic perovskite with small admixture of cubic phase. The ratio of both perovskite phases is independent of the particle size or prevailing crystal shape. All prepared materials show n-semiconducting character with band gap of ca 3.6 eV. They also show photo-electrochemical activity in water oxidation in acid media if a bias greater than 400 mV with respect to the flat band potential is applied. The specific photo-electrochemical activity decreases with increasing specific surface area. This behavior is attributed to increased probability of the electron transfer at the illuminated CaTiO3 surface facilitated by the surface states. The CaTiO3 materials also generate significant amount of ozone upon illumination in oxygen saturated solutions. The tendency to form ozone increases with increasing particle size suggesting that the ozone formation is hindered on materials with large number of low dimensionality states (crystal edges and vertices).

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电化学水氧化对纳米CaTiO3晶粒大小的影响
以明胶为结构导向剂,采用喷雾冷冻/冷冻干燥法制备了粒径可控的CaTiO3纳米晶材料。所得材料的特征粒径在19 ~ 60 nm之间。纳米晶体的形状从含有颗粒的立方体状单晶转变为不太规则的等距颗粒。经x射线衍射分析,所制备的材料由正交钙钛矿和少量立方相的混合物组成。两种钙钛矿相的比例与颗粒大小或晶体形状无关。所制备的材料均具有n-半导体特性,带隙约为3.6 eV。如果相对于平带电位施加大于400 mV的偏置,它们在酸性介质中的水氧化中也显示出光电化学活性。比光化学活性随比表面积的增加而降低。这种行为是由于表面状态促进了CaTiO3表面上电子转移的可能性增加。CaTiO3材料在饱和氧溶液中光照后也会产生大量的臭氧。臭氧的形成倾向随着颗粒尺寸的增加而增加,这表明臭氧的形成在具有大量低维状态(晶体边缘和顶点)的材料上受到阻碍。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
期刊最新文献
Exfoliated 2-D Graphitic Carbon Nitride Nanosheets for Electrochemical Detection of the Antiviral Drug Valganciclovir Simultaneous Measurement of Uric Acid, Guanine, and Adenine Using AgNP@Mn-MOFs Composite-Based Electrochemical Sensor at Trace Level: Application to Blood, Urine, and DNA Sample Matrices Hofmann-Type Coordination Polymer-Derived Nickel Phosphide Nanoplates for Electrocatalytic Oxidation and Determination of Insulin In Situ Synthesized Gold-Conjugated Hemoglobin-Cu3 (PO4)2 Hybrid Nanopetals for Enhanced Electrochemical Detection of H2O2 A Theoretical Inquest of Atomically Injected Ni-Atom over Graphene and Analogous Substrates for Hydrogen Evolution Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1