{"title":"Study of Fabrication and Properties of NiCoP Nanocrystalline Thin Film Electrodes for Hydrogen Evolution Electrocatalysts","authors":"Huibin Yuan, Xiangzhu He, Yuelan Yang, Jiahe Xie, Binjie Wu, Xiangjian Zeng, Shuxun Zeng","doi":"10.1007/s12678-024-00893-8","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen production from water splitting is considered the most environment-friendly and sustainable method to acquire energy. Alkaline water electrolysis has been widely employed for hydrogen production, but it is still challenging to prepare non-precious metals electrocatalysts to replace the noble-metal-based catalysts. Here we proposed electroless method to prepare a NiCoP nanocrystalline thin flim as efficient electrocatalysts. The morphology and mechanisms of the 45-minute alloy films deposited on Cu substrate were characterized by SEM, XRD, and XPS techniques, moreover, LSV, EIS, and CP were applied to analyze the electrochemical behavior. The nanocrystalline NiCoP<sub>45min</sub> alloy exhibits higher hydrogen evolution reaction (HER) activity than platinum sheet. An overpotential of -98 mV and a Tafel slope of 47.94 mV·dec<sup>−1</sup> at 10 mA·cm<sup>−2</sup> was achieved with the catalyst during HER in an alkaline medium. Additionally, its excellent catalytic activity is confirmed by a low Rt value 2.48 Ω. Remarkably, this catalyst also exhibits high HER stability for about 45 h in an alkaline electrolysic solution.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 6","pages":"519 - 528"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00893-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen production from water splitting is considered the most environment-friendly and sustainable method to acquire energy. Alkaline water electrolysis has been widely employed for hydrogen production, but it is still challenging to prepare non-precious metals electrocatalysts to replace the noble-metal-based catalysts. Here we proposed electroless method to prepare a NiCoP nanocrystalline thin flim as efficient electrocatalysts. The morphology and mechanisms of the 45-minute alloy films deposited on Cu substrate were characterized by SEM, XRD, and XPS techniques, moreover, LSV, EIS, and CP were applied to analyze the electrochemical behavior. The nanocrystalline NiCoP45min alloy exhibits higher hydrogen evolution reaction (HER) activity than platinum sheet. An overpotential of -98 mV and a Tafel slope of 47.94 mV·dec−1 at 10 mA·cm−2 was achieved with the catalyst during HER in an alkaline medium. Additionally, its excellent catalytic activity is confirmed by a low Rt value 2.48 Ω. Remarkably, this catalyst also exhibits high HER stability for about 45 h in an alkaline electrolysic solution.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.