One-step synthesis of NiS_2/rGO composite for efficient electrocatalytic urea oxidation

IF 3.3 Q3 ENERGY & FUELS MRS Energy & Sustainability Pub Date : 2022-06-02 DOI:10.1557/s43581-022-00032-0
Tzu-Ho Wu, Jing Zhan, B. Hou, Ziwei Qiu
{"title":"One-step synthesis of NiS_2/rGO composite for efficient electrocatalytic urea oxidation","authors":"Tzu-Ho Wu, Jing Zhan, B. Hou, Ziwei Qiu","doi":"10.1557/s43581-022-00032-0","DOIUrl":null,"url":null,"abstract":"This work reveals that nickel disulfide and reduced graphene oxide can be integrated by one-step hydrothermal method. Compared to pure nickel disulfide, the prepared composite renders boosted electrocatalytic performance toward urea oxidation with high reaction rate constant and turnover frequency. Urea electrolysis receives increasing attention, because it can remediate urea-contaminated wastewater and produce hydrogen fuel simultaneously. Developing advanced catalysts for urea oxidation reaction is highly desirable but still challenging. In this work, we reveal that nickel disulfide (NiS_2) and reduced graphene oxide (rGO) can be successfully prepared by one-step hydrothermal reaction. NiS_2/rGO composite material is characterized to exhibit improved electrical conductivity and larger electrochemical active surface area, which hold the key to promote the reaction kinetics of urea oxidation. The overall reaction rate constant is determined as 2.88 × 10^5 cm^3 mol^−1 s^−1 for NiS_2/rGO, which is $$\\approx$$ ≈ 75 times higher than that of NiS_2 counterpart (3.87 × 10^3 cm^3 mol^−1 s^−1). As a result, the NiS_2/rGO electrocatalyst demonstrates superior catalytic performance toward urea oxidation with high catalytic current responses (220 vs. 113 mA cm^−2 at 1.5 V), low Tafel slope (51 vs 87 mV dec^−1), and turn–over frequency (0.055 vs. 0.024 s^−1) in comparison with pure NiS_2. Moreover, NiS_2/rGO renders stable catatlytic performance in a 30,000 s test, addressing the crucial role of rGO in the composite sample. Graphical abstract","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43581-022-00032-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

This work reveals that nickel disulfide and reduced graphene oxide can be integrated by one-step hydrothermal method. Compared to pure nickel disulfide, the prepared composite renders boosted electrocatalytic performance toward urea oxidation with high reaction rate constant and turnover frequency. Urea electrolysis receives increasing attention, because it can remediate urea-contaminated wastewater and produce hydrogen fuel simultaneously. Developing advanced catalysts for urea oxidation reaction is highly desirable but still challenging. In this work, we reveal that nickel disulfide (NiS_2) and reduced graphene oxide (rGO) can be successfully prepared by one-step hydrothermal reaction. NiS_2/rGO composite material is characterized to exhibit improved electrical conductivity and larger electrochemical active surface area, which hold the key to promote the reaction kinetics of urea oxidation. The overall reaction rate constant is determined as 2.88 × 10^5 cm^3 mol^−1 s^−1 for NiS_2/rGO, which is $$\approx$$ ≈ 75 times higher than that of NiS_2 counterpart (3.87 × 10^3 cm^3 mol^−1 s^−1). As a result, the NiS_2/rGO electrocatalyst demonstrates superior catalytic performance toward urea oxidation with high catalytic current responses (220 vs. 113 mA cm^−2 at 1.5 V), low Tafel slope (51 vs 87 mV dec^−1), and turn–over frequency (0.055 vs. 0.024 s^−1) in comparison with pure NiS_2. Moreover, NiS_2/rGO renders stable catatlytic performance in a 30,000 s test, addressing the crucial role of rGO in the composite sample. Graphical abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一步合成NiS_2/rGO复合材料用于高效电催化尿素氧化
这项工作表明,二硫化镍和还原的氧化石墨烯可以通过一步水热法整合。与纯二硫化镍相比,所制备的复合材料对尿素氧化具有更高的电催化性能,具有较高的反应速率常数和周转频率。尿素电解法能够同时处理尿素污染的废水和生产氢燃料,因此受到越来越多的关注。开发用于尿素氧化反应的先进催化剂是非常需要的,但仍然具有挑战性。在这项工作中,我们发现通过一步水热反应可以成功地制备二硫化镍(NiS_2)和还原氧化石墨烯(rGO)。NiS_2/rGO复合材料具有导电性提高和电化学活性表面积增大的特点,这是促进尿素氧化反应动力学的关键。总反应速率常数确定为2.88 × NiS_2/rGO的10^5 cm^3 mol^−1 s^−1,比NiS_2的对应物(3.87 × 10^3厘米^3摩尔^−1秒^−1)。因此,与纯NiS_2相比,NiS_2/rGO电催化剂对尿素氧化表现出优异的催化性能,具有高催化电流响应(在1.5 V下为220 vs.113 mA cm^−2)、低Tafel斜率(51 vs.87 mV dec^−1)和翻转频率(0.055 vs.0.024 s^−1。此外,NiS_2/rGO在30000s的测试中表现出稳定的催化性能,解决了rGO在复合样品中的关键作用。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MRS Energy & Sustainability
MRS Energy & Sustainability ENERGY & FUELS-
CiteScore
6.40
自引率
2.30%
发文量
36
期刊最新文献
MXenes vs MBenes: Demystifying the materials of tomorrow’s carbon capture revolution Materials scarcity during the clean energy transition: Myths, challenges, and opportunities Carbon footprint inventory using life cycle energy analysis Advanced hybrid combustion systems as a part of efforts to achieve carbon neutrality of the vehicles Assessment of the penetration impact of renewable-rich electrical grids: The Jordanian grid as a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1