{"title":"A LiDAR Architecture Based on Indirect ToF For Autonomous Cars","authors":"Luis G. Da Silva, Arismar Cerqueira S. Jr.","doi":"10.1590/2179-10742021v20i31137","DOIUrl":null,"url":null,"abstract":"Abstract A LiDAR architecture for autonomous cars is presented and validated by numerical and experimental results. The proposed scheme is based on indirect time-of-flight principle based on continuous-wave pseudorandom codes and incoherent detection for range evaluation. The range ambiguity and resolution are controlled by the parameters of the pseudorandom code. Experimental results are reported for target detection ranging from 13 to 1,000 m, as well as a demonstration of a dual-target detection, demonstrating the efficiency of the proposed LiDAR architecture to operate in real scenarios of autonomous cars. A measured range error of less than 0.6 % has been achieved for both single and dual-target detection.","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742021v20i31137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A LiDAR architecture for autonomous cars is presented and validated by numerical and experimental results. The proposed scheme is based on indirect time-of-flight principle based on continuous-wave pseudorandom codes and incoherent detection for range evaluation. The range ambiguity and resolution are controlled by the parameters of the pseudorandom code. Experimental results are reported for target detection ranging from 13 to 1,000 m, as well as a demonstration of a dual-target detection, demonstrating the efficiency of the proposed LiDAR architecture to operate in real scenarios of autonomous cars. A measured range error of less than 0.6 % has been achieved for both single and dual-target detection.
期刊介绍:
The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.