{"title":"STRUCTURAL ANALYSIS OF JACKET FOUNDATIONS FOR OFFSHORE WIND TURBINES IN TRANSITIONAL WATER","authors":"Issa Fowai, Z. Jianhua, K. Sun, Bin Wang","doi":"10.21278/BROD72106","DOIUrl":null,"url":null,"abstract":"Most of the offshore wind turbines (OWT) recently installed in Europe, China and North America are in shallow water. However, unlocking the full potential of OWT lies in deeper waters. Jacket substructures have presented themselves as a reliable foundation concept for transitional water depth. This study focuses on the structural static and dynamic analysis of the traditional jacket substructures (with X and K bracing) and the recently patented three-legged twisted jackets (with a twisted angle of 30 and 60 degrees) for deployment in transitional water (beyond 60 m). To facilitate comparison, the dimensions of all the jackets remain the same, while, the geometric configurations are distinct. Static analysis was implemented to better understand the global load bearing behaviour of the jackets. First, the global displacement patterns at the tower top are compared. The individual reactions at mud-line were investigated, followed by the evaluation of the maximum von Mises stress. Subsequently, this research went on to investigate the effect of dynamic loading. In this dynamic analysis, three main critical points were considered, including the wave point (67 m), the platform and the tower top. A modal analysis was performed to compute the mode shapes and natural frequencies for all the jackets. The first five modes of all the jackets were also checked against the results available for the OC4 project. A similar analytical approach was adopted for the structural design of monopile or tripod foundations for offshore wind turbines. The results showed that in the static analysis both the traditional jackets and the twisted jackets were safe under the provided load combination. The twisted jacket proved to possess excellent structural behaviour compared to the traditional four-legged jackets, while maintaining the merits of lower material usage with fewer nodes. Analysing the von Mises stress revealed that the maximum stress occurred at the transition piece and close to the working platform. The modal analysis results of the jackets demonstrated that the twisted jackets (30 and 60 degrees) with the first natural frequency of 0.29 and 0.31 Hz fell under the soft-stiff design category whereas the traditional four-legged jackets were classified as stiff-stiff designs. The discovered structural performance of OWTs equipped with various jacket foundations contributes to the preliminary structural selection and optimal design of foundations of OWTs to be installed in transitional water.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/BROD72106","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1
Abstract
Most of the offshore wind turbines (OWT) recently installed in Europe, China and North America are in shallow water. However, unlocking the full potential of OWT lies in deeper waters. Jacket substructures have presented themselves as a reliable foundation concept for transitional water depth. This study focuses on the structural static and dynamic analysis of the traditional jacket substructures (with X and K bracing) and the recently patented three-legged twisted jackets (with a twisted angle of 30 and 60 degrees) for deployment in transitional water (beyond 60 m). To facilitate comparison, the dimensions of all the jackets remain the same, while, the geometric configurations are distinct. Static analysis was implemented to better understand the global load bearing behaviour of the jackets. First, the global displacement patterns at the tower top are compared. The individual reactions at mud-line were investigated, followed by the evaluation of the maximum von Mises stress. Subsequently, this research went on to investigate the effect of dynamic loading. In this dynamic analysis, three main critical points were considered, including the wave point (67 m), the platform and the tower top. A modal analysis was performed to compute the mode shapes and natural frequencies for all the jackets. The first five modes of all the jackets were also checked against the results available for the OC4 project. A similar analytical approach was adopted for the structural design of monopile or tripod foundations for offshore wind turbines. The results showed that in the static analysis both the traditional jackets and the twisted jackets were safe under the provided load combination. The twisted jacket proved to possess excellent structural behaviour compared to the traditional four-legged jackets, while maintaining the merits of lower material usage with fewer nodes. Analysing the von Mises stress revealed that the maximum stress occurred at the transition piece and close to the working platform. The modal analysis results of the jackets demonstrated that the twisted jackets (30 and 60 degrees) with the first natural frequency of 0.29 and 0.31 Hz fell under the soft-stiff design category whereas the traditional four-legged jackets were classified as stiff-stiff designs. The discovered structural performance of OWTs equipped with various jacket foundations contributes to the preliminary structural selection and optimal design of foundations of OWTs to be installed in transitional water.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.