A. Płażek, Maria Tatrzańska, M. Maciejewski, M. Dziurka, P. Waligórski, F. Dubert
{"title":"Effects of zearalenone and 24- epi brassinolide on the salt tolerance of select monocotyledonous crop plants","authors":"A. Płażek, Maria Tatrzańska, M. Maciejewski, M. Dziurka, P. Waligórski, F. Dubert","doi":"10.5073/JABFQ.2017.090.035","DOIUrl":null,"url":null,"abstract":"Salinity has an increasing impact on crop production worldwide. Contemporary agricultural practices increasingly use plant biostimulants that protect plants against various environmental stresses. The aim of the work was to investigate whether such stimulants as 24-epibrassinolide (EPI) and zearalenone (ZEN) may alleviate effects of salinity in bread and durum wheat, maize, and sorghum plants. Plants were grown in glasshouse, in pots filled with perlite under continuous salinity stress (120 mM of NaCl). Four-week-old plants were treated with the stimulants. The plant responses to salinity were determined analyzing the following parameters: fresh and dry weights of plants, water content, electrolyte leakage, proline, abscisic acid, and the soluble carbohydrate contents in the leaves. The positive effect of ZEN on the studied parameters was more frequently observed than in the case of EPI. ZEN increased the root mass of both wheat species, as well as the stem and root masses of sorghum. This stimulant improved water relations in bread and durum wheat. Both stimulators increased the content of soluble carbohydrates. ZEN elevated significantly abscisic acid content in sorghum plants as well as it increased strongly proline level in all studied plant species. ZEN was more effective in alleviation salinity disorders than EPI.","PeriodicalId":56276,"journal":{"name":"Journal of Applied Botany and Food Quality-Angewandte Botanik","volume":"90 1","pages":"280-287"},"PeriodicalIF":1.2000,"publicationDate":"2017-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Botany and Food Quality-Angewandte Botanik","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5073/JABFQ.2017.090.035","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
Salinity has an increasing impact on crop production worldwide. Contemporary agricultural practices increasingly use plant biostimulants that protect plants against various environmental stresses. The aim of the work was to investigate whether such stimulants as 24-epibrassinolide (EPI) and zearalenone (ZEN) may alleviate effects of salinity in bread and durum wheat, maize, and sorghum plants. Plants were grown in glasshouse, in pots filled with perlite under continuous salinity stress (120 mM of NaCl). Four-week-old plants were treated with the stimulants. The plant responses to salinity were determined analyzing the following parameters: fresh and dry weights of plants, water content, electrolyte leakage, proline, abscisic acid, and the soluble carbohydrate contents in the leaves. The positive effect of ZEN on the studied parameters was more frequently observed than in the case of EPI. ZEN increased the root mass of both wheat species, as well as the stem and root masses of sorghum. This stimulant improved water relations in bread and durum wheat. Both stimulators increased the content of soluble carbohydrates. ZEN elevated significantly abscisic acid content in sorghum plants as well as it increased strongly proline level in all studied plant species. ZEN was more effective in alleviation salinity disorders than EPI.
期刊介绍:
The Journal of Applied Botany and Food Quality is the Open Access journal of the German Society for Quality Research on Plant Foods and the Section Applied Botany of the German Botanical Society. It provides a platform for scientists to disseminate recent results of applied plant research in plant physiology and plant ecology, plant biotechnology, plant breeding and cultivation, phytomedicine, plant nutrition, plant stress and resistance, plant microbiology, plant analysis (including -omics techniques), and plant food chemistry. The articles have a clear focus on botanical and plant quality aspects and contain new and innovative information based on state-of-the-art methodologies.