A hybrid learning method for distinguishing lung adenocarcinoma and squamous cell carcinoma

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Technologies and Applications Pub Date : 2023-05-19 DOI:10.1108/dta-10-2022-0384
Anil Kumar Swain, A. Swetapadma, Jitendra Kumar Rout, Bunil Kumar Balabantaray
{"title":"A hybrid learning method for distinguishing lung adenocarcinoma and squamous cell carcinoma","authors":"Anil Kumar Swain, A. Swetapadma, Jitendra Kumar Rout, Bunil Kumar Balabantaray","doi":"10.1108/dta-10-2022-0384","DOIUrl":null,"url":null,"abstract":"PurposeThe objective of the proposed work is to identify the most commonly occurring non–small cell carcinoma types, such as adenocarcinoma and squamous cell carcinoma, within the human population. Another objective of the work is to reduce the false positive rate during the classification.Design/methodology/approachIn this work, a hybrid method using convolutional neural networks (CNNs), extreme gradient boosting (XGBoost) and long-short-term memory networks (LSTMs) has been proposed to distinguish between lung adenocarcinoma and squamous cell carcinoma. To extract features from non–small cell lung carcinoma images, a three-layer convolution and three-layer max-pooling-based CNN is used. A few important features have been selected from the extracted features using the XGBoost algorithm as the optimal feature. Finally, LSTM has been used for the classification of carcinoma types. The accuracy of the proposed method is 99.57 per cent, and the false positive rate is 0.427 per cent.FindingsThe proposed CNN–XGBoost–LSTM hybrid method has significantly improved the results in distinguishing between adenocarcinoma and squamous cell carcinoma. The importance of the method can be outlined as follows: It has a very low false positive rate of 0.427 per cent. It has very high accuracy, i.e. 99.57 per cent. CNN-based features are providing accurate results in classifying lung carcinoma. It has the potential to serve as an assisting aid for doctors.Practical implicationsIt can be used by doctors as a secondary tool for the analysis of non–small cell lung cancers.Social implicationsIt can help rural doctors by sending the patients to specialized doctors for more analysis of lung cancer.Originality/valueIn this work, a hybrid method using CNN, XGBoost and LSTM has been proposed to distinguish between lung adenocarcinoma and squamous cell carcinoma. A three-layer convolution and three-layer max-pooling-based CNN is used to extract features from the non–small cell lung carcinoma images. A few important features have been selected from the extracted features using the XGBoost algorithm as the optimal feature. Finally, LSTM has been used for the classification of carcinoma types.","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-10-2022-0384","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThe objective of the proposed work is to identify the most commonly occurring non–small cell carcinoma types, such as adenocarcinoma and squamous cell carcinoma, within the human population. Another objective of the work is to reduce the false positive rate during the classification.Design/methodology/approachIn this work, a hybrid method using convolutional neural networks (CNNs), extreme gradient boosting (XGBoost) and long-short-term memory networks (LSTMs) has been proposed to distinguish between lung adenocarcinoma and squamous cell carcinoma. To extract features from non–small cell lung carcinoma images, a three-layer convolution and three-layer max-pooling-based CNN is used. A few important features have been selected from the extracted features using the XGBoost algorithm as the optimal feature. Finally, LSTM has been used for the classification of carcinoma types. The accuracy of the proposed method is 99.57 per cent, and the false positive rate is 0.427 per cent.FindingsThe proposed CNN–XGBoost–LSTM hybrid method has significantly improved the results in distinguishing between adenocarcinoma and squamous cell carcinoma. The importance of the method can be outlined as follows: It has a very low false positive rate of 0.427 per cent. It has very high accuracy, i.e. 99.57 per cent. CNN-based features are providing accurate results in classifying lung carcinoma. It has the potential to serve as an assisting aid for doctors.Practical implicationsIt can be used by doctors as a secondary tool for the analysis of non–small cell lung cancers.Social implicationsIt can help rural doctors by sending the patients to specialized doctors for more analysis of lung cancer.Originality/valueIn this work, a hybrid method using CNN, XGBoost and LSTM has been proposed to distinguish between lung adenocarcinoma and squamous cell carcinoma. A three-layer convolution and three-layer max-pooling-based CNN is used to extract features from the non–small cell lung carcinoma images. A few important features have been selected from the extracted features using the XGBoost algorithm as the optimal feature. Finally, LSTM has been used for the classification of carcinoma types.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
区分肺腺癌和鳞状细胞癌的混合学习方法
目的提出的工作的目的是确定最常见的非小细胞癌类型,如腺癌和鳞状细胞癌,在人群中。工作的另一个目标是降低分类过程中的误报率。在这项工作中,提出了一种使用卷积神经网络(cnn)、极端梯度增强(XGBoost)和长短期记忆网络(LSTMs)的混合方法来区分肺腺癌和鳞状细胞癌。为了从非小细胞肺癌图像中提取特征,使用了三层卷积和基于三层最大池化的CNN。使用XGBoost算法从提取的特征中选择一些重要的特征作为最优特征。最后,LSTM已被用于肿瘤类型的分类。结果提出的CNN-XGBoost-LSTM混合方法对腺癌和鳞状细胞癌的鉴别结果有显著提高。该方法的重要性可以概括如下:它的假阳性率非常低,为0.427%。准确率非常高,为99.57%。基于cnn的特征在肺癌分类中提供了准确的结果。它有可能成为医生的辅助工具。它可以被医生用作分析非小细胞肺癌的辅助工具。它可以帮助农村医生将患者送到专科医生那里进行更多的肺癌分析。在这项工作中,我们提出了一种使用CNN、XGBoost和LSTM的混合方法来区分肺腺癌和鳞状细胞癌。采用三层卷积和基于三层最大池化的CNN对非小细胞肺癌图像进行特征提取。使用XGBoost算法从提取的特征中选择一些重要的特征作为最优特征。最后,LSTM已被用于肿瘤类型的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Technologies and Applications
Data Technologies and Applications Social Sciences-Library and Information Sciences
CiteScore
3.80
自引率
6.20%
发文量
29
期刊介绍: Previously published as: Program Online from: 2018 Subject Area: Information & Knowledge Management, Library Studies
期刊最新文献
Understanding customer behavior by mapping complaints to personality based on social media textual data A systematic review of the use of FHIR to support clinical research, public health and medical education Novel framework for learning performance prediction using pattern identification and deep learning A comparative analysis of job satisfaction prediction models using machine learning: a mixed-method approach Assessing the alignment of corporate ESG disclosures with the UN sustainable development goals: a BERT-based text analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1