{"title":"Effects of the Thickness of Boundary Layer on Droplet’s Evaporation Rate","authors":"P. Jonglearttrakull, K. Fushinobu, M. Kadonaga","doi":"10.2352/j.imagingsci.technol.2020.64.5.050402","DOIUrl":null,"url":null,"abstract":"Abstract The evaporation rate of a droplet was explained in relation to the thickness of the boundary layer and the condition near the droplet’s surface. However, the number of results obtained from experiments is very limited. This study aims to investigate the thickness\n of the boundary layer of an ethanol‐water mixture droplet and its effect on the evaporation rate by Z-type Schlieren visualization. Single and double droplets are tested and compared to identify the effect of the second droplet on the average and instantaneous evaporation rate. The\n double droplet’s lifetime is found to be longer than the single droplet’s lifetime. The formation of a larger vapor region on the top of the droplet indicates a higher instantaneous evaporation rate. The thickness of the boundary layer is found to increase with increase in ethanol\n concentration. Furthermore, a larger vapor distribution area is found in the case of higher ethanol concentration, which explains the faster evaporation rate at higher ethanol concentration.","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2352/j.imagingsci.technol.2020.64.5.050402","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The evaporation rate of a droplet was explained in relation to the thickness of the boundary layer and the condition near the droplet’s surface. However, the number of results obtained from experiments is very limited. This study aims to investigate the thickness
of the boundary layer of an ethanol‐water mixture droplet and its effect on the evaporation rate by Z-type Schlieren visualization. Single and double droplets are tested and compared to identify the effect of the second droplet on the average and instantaneous evaporation rate. The
double droplet’s lifetime is found to be longer than the single droplet’s lifetime. The formation of a larger vapor region on the top of the droplet indicates a higher instantaneous evaporation rate. The thickness of the boundary layer is found to increase with increase in ethanol
concentration. Furthermore, a larger vapor distribution area is found in the case of higher ethanol concentration, which explains the faster evaporation rate at higher ethanol concentration.
期刊介绍:
Typical issues include research papers and/or comprehensive reviews from a variety of topical areas. In the spirit of fostering constructive scientific dialog, the Journal accepts Letters to the Editor commenting on previously published articles. Periodically the Journal features a Special Section containing a group of related— usually invited—papers introduced by a Guest Editor. Imaging research topics that have coverage in JIST include:
Digital fabrication and biofabrication;
Digital printing technologies;
3D imaging: capture, display, and print;
Augmented and virtual reality systems;
Mobile imaging;
Computational and digital photography;
Machine vision and learning;
Data visualization and analysis;
Image and video quality evaluation;
Color image science;
Image archiving, permanence, and security;
Imaging applications including astronomy, medicine, sports, and autonomous vehicles.