{"title":"Classification and Automatic Feature-Based Extraction Approach for Cylindrical and Milling Parts","authors":"Sathish Kumar Adapa, D. Sreeramulu, Jagadish","doi":"10.4018/IJMMME.2021070104","DOIUrl":null,"url":null,"abstract":"This paper reports classification and automatic extraction of various cylindrical and milling features in conventional machining process parts. In this work, various algorithms like hole recognition algorithm (HRA) and milling feature recognition algorithm (MFRA) have been used for identification of different cylindrical and milling features. A cylindrical feature is identified based on specific logical rules, and milling feature is identified based on the concept of concave decomposition of edges. In-house developed JAVA program is used to write algorithm, and then validation of the algorithm is done through two case studies. The HRA and MFRA algorithms extract the cylindrical features (through holes, blind holes, taper holes, and bosses) and milling features (slot, blind slot, step, blind step, pockets) precisely. The current work is well suitable to extract the features in conventional machining parts and thereby improve the downstream applications likes process planning, CAPP, CAM, etc.","PeriodicalId":43174,"journal":{"name":"International Journal of Manufacturing Materials and Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Manufacturing Materials and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJMMME.2021070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports classification and automatic extraction of various cylindrical and milling features in conventional machining process parts. In this work, various algorithms like hole recognition algorithm (HRA) and milling feature recognition algorithm (MFRA) have been used for identification of different cylindrical and milling features. A cylindrical feature is identified based on specific logical rules, and milling feature is identified based on the concept of concave decomposition of edges. In-house developed JAVA program is used to write algorithm, and then validation of the algorithm is done through two case studies. The HRA and MFRA algorithms extract the cylindrical features (through holes, blind holes, taper holes, and bosses) and milling features (slot, blind slot, step, blind step, pockets) precisely. The current work is well suitable to extract the features in conventional machining parts and thereby improve the downstream applications likes process planning, CAPP, CAM, etc.