Developing a two-decadal time-record of rice field maps using Landsat-derived multi-index image collections with a random forest classifier: A Google Earth Engine based approach
{"title":"Developing a two-decadal time-record of rice field maps using Landsat-derived multi-index image collections with a random forest classifier: A Google Earth Engine based approach","authors":"W. Ashane M. Fernando , I.P. Senanayake","doi":"10.1016/j.inpa.2023.02.009","DOIUrl":null,"url":null,"abstract":"<div><p>Historic maps showing the temporal distribution of rice fields are important for precision agriculture, irrigation optimisation, forecasting crop yields, land use management and formulating policies. However, mapping rice fields using traditional ground surveys is impractical when high cost, time and labour requirements are considered, and the availability of such detailed records is limited. Although satellite remote sensing appears to be a viable solution, conventional segmentation and classification methods with spectral bands are often unable to contrast the distinct characteristics between rice fields and other vegetation classes. To this end, we explored a novel, Google Earth Engine (GEE) based multi-index random forest (RF) classification approach to map rice fields over two decades. Landsat images from 2000 to 2020 of two Sri Lankan rice cultivation districts were extracted from GEE and a multi-index RF classification algorithm was applied to distinguish the rice fields. The results showed above 80% accuracy for both training and validation, when compared against high spatial resolution Google Earth imagery. In essence, multi-index sampling and RF together synergised the compelling classification accuracy by effectively capturing vegetation, water (ponding) and soil characteristics unique to the rice fields using a single-click approach. The maps developed in this study were further compared against the MODIS land cover type product (MCD12Q1) and the corresponding superior statistics on rice fields demonstrated the robustness of the proposed approach. Future work seeking effective index combinations is recommended, and this approach can potentially be extended to other crop analyses elsewhere.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 2","pages":"Pages 260-275"},"PeriodicalIF":7.7000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000197/pdfft?md5=daad57f20696f933e634356c23afaed4&pid=1-s2.0-S2214317323000197-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317323000197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Historic maps showing the temporal distribution of rice fields are important for precision agriculture, irrigation optimisation, forecasting crop yields, land use management and formulating policies. However, mapping rice fields using traditional ground surveys is impractical when high cost, time and labour requirements are considered, and the availability of such detailed records is limited. Although satellite remote sensing appears to be a viable solution, conventional segmentation and classification methods with spectral bands are often unable to contrast the distinct characteristics between rice fields and other vegetation classes. To this end, we explored a novel, Google Earth Engine (GEE) based multi-index random forest (RF) classification approach to map rice fields over two decades. Landsat images from 2000 to 2020 of two Sri Lankan rice cultivation districts were extracted from GEE and a multi-index RF classification algorithm was applied to distinguish the rice fields. The results showed above 80% accuracy for both training and validation, when compared against high spatial resolution Google Earth imagery. In essence, multi-index sampling and RF together synergised the compelling classification accuracy by effectively capturing vegetation, water (ponding) and soil characteristics unique to the rice fields using a single-click approach. The maps developed in this study were further compared against the MODIS land cover type product (MCD12Q1) and the corresponding superior statistics on rice fields demonstrated the robustness of the proposed approach. Future work seeking effective index combinations is recommended, and this approach can potentially be extended to other crop analyses elsewhere.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining