Representing uncertainty through sentiment and stance visualizations: A survey

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2023-10-01 DOI:10.1016/j.gmod.2023.101191
Bárbara Ramalho, Joaquim Jorge, Sandra Gama
{"title":"Representing uncertainty through sentiment and stance visualizations: A survey","authors":"Bárbara Ramalho,&nbsp;Joaquim Jorge,&nbsp;Sandra Gama","doi":"10.1016/j.gmod.2023.101191","DOIUrl":null,"url":null,"abstract":"<div><p>Visual analytics combines automated analysis techniques with interactive visualizations for effective understanding, reasoning, and decision-making on complex data. However, accurately classifying sentiments and stances in sentiment analysis remains challenging due to ambiguity and individual differences. This survey examines 35 papers published between 2016 and 2022, identifying unaddressed sources of friction that contribute to a gap between individual sentiment, processed data, and visual representation. We explore the impact of visualizations on data perception, analyze existing techniques, and investigate the many facets of uncertainty in sentiment and stance visualizations. We also discuss the evaluation methods used and present opportunities for future research. Our work addresses a gap in previous surveys by focusing on uncertainty and the visualization of sentiment and stance, providing valuable insights for researchers in graphical models, computational methods, and information visualization.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"129 ","pages":"Article 101191"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000218","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Visual analytics combines automated analysis techniques with interactive visualizations for effective understanding, reasoning, and decision-making on complex data. However, accurately classifying sentiments and stances in sentiment analysis remains challenging due to ambiguity and individual differences. This survey examines 35 papers published between 2016 and 2022, identifying unaddressed sources of friction that contribute to a gap between individual sentiment, processed data, and visual representation. We explore the impact of visualizations on data perception, analyze existing techniques, and investigate the many facets of uncertainty in sentiment and stance visualizations. We also discuss the evaluation methods used and present opportunities for future research. Our work addresses a gap in previous surveys by focusing on uncertainty and the visualization of sentiment and stance, providing valuable insights for researchers in graphical models, computational methods, and information visualization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过情绪和立场可视化来表示不确定性:一项调查
可视化分析将自动分析技术与交互式可视化相结合,以便对复杂数据进行有效的理解、推理和决策。然而,由于歧义和个体差异,在情感分析中准确分类情感和立场仍然具有挑战性。本调查分析了2016年至2022年间发表的35篇论文,找出了导致个人情绪、处理过的数据和视觉表现之间存在差距的未解决的摩擦来源。我们探讨了可视化对数据感知的影响,分析了现有的技术,并研究了情绪和立场可视化中不确定性的许多方面。我们还讨论了所使用的评估方法,并提出了未来研究的机会。我们的工作通过关注不确定性和情绪和立场的可视化解决了以前调查的空白,为图形模型、计算方法和信息可视化方面的研究人员提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
3D data augmentation and dual-branch model for robust face forgery detection Quasi-interpolation projectors for subdivision function spaces Efficient alternating and joint distance minimization methods for adaptive spline surface fitting Discrete variable 3D models in Computer extended Descriptive Geometry (CeDG): Building of polygonal sheet-metal elbows and comparison against CAD Lightweight deep learning method for end-to-end point cloud registration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1