Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras

Natalia Arteaga-López, Carlos Delgado-Calvache, Juan-Fernando Casanova, Cristian Figeroa
{"title":"Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras","authors":"Natalia Arteaga-López, Carlos Delgado-Calvache, Juan-Fernando Casanova, Cristian Figeroa","doi":"10.19053/01211129.v31.n62.2022.14870","DOIUrl":null,"url":null,"abstract":"The use of Unmanned Aerial Vehicles (UAVs) equipped with spectral cameras has increased in recent years, especially in the agricultural sector, because it allows farmers and researchers to analyze the state of a crop, i.e., health, nutrients, growth, epidemics, among other parameters. In Colombia, the coffee production sector faces several challenges, such as the need to increase the productivity, the yield, and the quality of coffee. This work estimated the health status of a Castilla variety crop located in San Joaquín, Tambo, Cauca to support the decision-making of coffee growers. For this, chlorophyll data were measured in the field with the CCM-200 plus device, multispectral images were captured with the MAPIR SURVEY 3 camera airborne on a SOLO 3DR UAV, and synthetic data were generated to increase the data set. Six vegetation indices were set, which—together with the chlorophyll values—were modeled through the implementation of simple and multiple linear regressions, decision trees, vector machines, random forests, and k-nearest neighbors. The model with the best performance and the lowest mean square error was disorder with the support vector machine. Likewise, the best performance indices in the models were CVI, GNDVI, and GCI, which are widely used in agriculture to estimate the chlorophyll of plants.","PeriodicalId":42846,"journal":{"name":"Revista Facultad de Ingenieria, Universidad Pedagogica y Tecnologica de Colombia","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Facultad de Ingenieria, Universidad Pedagogica y Tecnologica de Colombia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19053/01211129.v31.n62.2022.14870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of Unmanned Aerial Vehicles (UAVs) equipped with spectral cameras has increased in recent years, especially in the agricultural sector, because it allows farmers and researchers to analyze the state of a crop, i.e., health, nutrients, growth, epidemics, among other parameters. In Colombia, the coffee production sector faces several challenges, such as the need to increase the productivity, the yield, and the quality of coffee. This work estimated the health status of a Castilla variety crop located in San Joaquín, Tambo, Cauca to support the decision-making of coffee growers. For this, chlorophyll data were measured in the field with the CCM-200 plus device, multispectral images were captured with the MAPIR SURVEY 3 camera airborne on a SOLO 3DR UAV, and synthetic data were generated to increase the data set. Six vegetation indices were set, which—together with the chlorophyll values—were modeled through the implementation of simple and multiple linear regressions, decision trees, vector machines, random forests, and k-nearest neighbors. The model with the best performance and the lowest mean square error was disorder with the support vector machine. Likewise, the best performance indices in the models were CVI, GNDVI, and GCI, which are widely used in agriculture to estimate the chlorophyll of plants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用配备多光谱相机的无人机分析咖啡作物
近年来,配备光谱相机的无人机的使用有所增加,尤其是在农业部门,因为它可以让农民和研究人员分析作物的状态,即健康、营养、生长、流行病等参数。在哥伦比亚,咖啡生产部门面临着一些挑战,例如需要提高咖啡的生产力、产量和质量。这项工作估计了位于考卡州坦博市圣若阿金的卡斯蒂利亚品种作物的健康状况,以支持咖啡种植者的决策。为此,使用CCM-200 plus设备在现场测量叶绿素数据,使用SOLO 3DR无人机机载的MAPIR SURVEY 3相机拍摄多光谱图像,并生成合成数据以增加数据集。设置了六个植被指数,这些指数与叶绿素值一起,通过实施简单和多重线性回归、决策树、向量机、随机森林和k近邻进行建模。具有最佳性能和最小均方误差的模型是使用支持向量机的无序模型。同样,模型中最好的性能指标是CVI、GNDVI和GCI,它们在农业中广泛用于估计植物的叶绿素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Potenciación de la escritura a través de la creatividad Tecnología y educación superior: visión desde la estética enfilada el mejoramiento humano Estrés en niños de quinto de primaria: Propuesta de talleres interactivos El Google Drive para potenciar la escritura de los textos argumentativos Heat flow modeling in the alkaline activation process of fly ash
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1