Relevance between MRI longitudinal relaxation rate and gadolinium concentration in Gd3+/GO/alginate nanocomposite

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY Nanomedicine Journal Pub Date : 2019-10-01 DOI:10.22038/NMJ.2019.06.000004
Ensiyeh Shafaei, B. Divband, N. Gharehaghaji
{"title":"Relevance between MRI longitudinal relaxation rate and gadolinium concentration in Gd3+/GO/alginate nanocomposite","authors":"Ensiyeh Shafaei, B. Divband, N. Gharehaghaji","doi":"10.22038/NMJ.2019.06.000004","DOIUrl":null,"url":null,"abstract":"Objective(s): Relevance between magnetic resonance imaging (MRI) relaxation rate and concentration of magnetic nanoparticles determines the capability of a nanomaterial to provide MRI contrast. In the present study, alginate was conjugated to gadolinium/graphene oxide nanocomposite to form gadolinium/graphene oxide/alginate nanocomposite, aiming to investigate its effect on the relevance between MRI longitudinal relaxation rate and paramagnetic gadolinium concentration.Materials and Methods: The physicochemical properties of the nanocomposite and its effect on the cell culture were investigated. Moreover, MRI longitudinal relaxation rates were determined based on the corresponding exponential curves, and the graph of their relevance with gadolinium concentration was plotted. Results: The average thickness and sheet size of the nanocomposite were three and 100 nanometers, respectively. The nanocomposite showed high cell viability, even at the relatively high concentration of 75 µg/ml. In addition, a linear correlation was observed between longitudinal relaxation rate and gadolinium concentration. Conclusion: According to the results, the linearity between gadolinium/graphene oxide/alginate nanocomposite and gadolinium concentration, which revealed a high slope, confirmed the potential of the nanocomposite to significantly improve the positive contrast of MR images.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/NMJ.2019.06.000004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Objective(s): Relevance between magnetic resonance imaging (MRI) relaxation rate and concentration of magnetic nanoparticles determines the capability of a nanomaterial to provide MRI contrast. In the present study, alginate was conjugated to gadolinium/graphene oxide nanocomposite to form gadolinium/graphene oxide/alginate nanocomposite, aiming to investigate its effect on the relevance between MRI longitudinal relaxation rate and paramagnetic gadolinium concentration.Materials and Methods: The physicochemical properties of the nanocomposite and its effect on the cell culture were investigated. Moreover, MRI longitudinal relaxation rates were determined based on the corresponding exponential curves, and the graph of their relevance with gadolinium concentration was plotted. Results: The average thickness and sheet size of the nanocomposite were three and 100 nanometers, respectively. The nanocomposite showed high cell viability, even at the relatively high concentration of 75 µg/ml. In addition, a linear correlation was observed between longitudinal relaxation rate and gadolinium concentration. Conclusion: According to the results, the linearity between gadolinium/graphene oxide/alginate nanocomposite and gadolinium concentration, which revealed a high slope, confirmed the potential of the nanocomposite to significantly improve the positive contrast of MR images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gd3+/GO/海藻酸盐纳米复合材料MRI纵向弛豫率与钆浓度的相关性
目的:磁共振成像(MRI)弛豫率与磁性纳米颗粒浓度之间的相关性决定了纳米材料提供MRI对比的能力。本研究将海藻酸盐与钆/氧化石墨烯纳米复合材料偶联,形成钆/氧化石墨烯/海藻酸盐纳米复合材料,旨在研究其对MRI纵向弛豫速率与顺磁钆浓度相关性的影响。材料与方法:研究了纳米复合材料的理化性质及其对细胞培养的影响。根据相应的指数曲线确定MRI纵向弛豫率,并绘制其与钆浓度的相关性图。结果:纳米复合材料的平均厚度为3纳米,薄片尺寸为100纳米。即使在相对较高的浓度(75µg/ml)下,纳米复合材料也显示出较高的细胞活力。此外,纵向弛豫速率与钆浓度呈线性相关。结论:钆/氧化石墨烯/海藻酸盐纳米复合材料与钆浓度呈高斜率线性关系,证实了该纳米复合材料具有显著提高MR图像正对比度的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomedicine Journal
Nanomedicine Journal NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Nano aptasensors for detection of streptomycin: A review Synthesis of silver nanoparticles by Galega officinalis and its hypoglycemic effects in type 1 diabetic rats Evaluation of mPEG-PLA nanoparticles as vaccine delivery system for modified protective antigen of Bacillus anthracis Synthesis and evaluation of SPION@CMD@Ser-LTVSPWY peptide as a targeted probe for detection of HER2+ cancer cells in MRI Synthesis of L-DOPA conjugated doxorubicin-polyethylenimine nanocarrier and evaluation of its cytotoxicity on A375 and HepG2 cell lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1