{"title":"Design and Feasibility Test of an Indigenous Motorized Wheel for Manual Wheelchair","authors":"Sateesh Reddy Avutu, S. Paul, D. Bhatia","doi":"10.4018/IJMMME.2019070104","DOIUrl":null,"url":null,"abstract":"The wheelchair is essential for people with either spinal injury, limb injury, or trauma patients. The need at present is to customize the wheelchair based on the requirements of the disabled person. The maintenance and customization of a manual wheelchair is both simple and cost-effective when compared to powered wheelchairs, which are expensive and difficult to maintain in the long run. Accordingly, in this article, an attempt has been made to bring the facilities available in a powered wheelchair into the manual wheelchair, making it affordable to common people. Feasibility of a distinct manual wheelchair rear wheel rim is examined for various hub motor weights. The rear wheel of the manual wheelchair was replaced with an in-wheel direct drive hub-motor system. The proposed wheel model was designed using CATIA – V5 and an analysis was done using ANSYS software. A structural analysis was carried out to check the reliability and durability of the proposed wheel for different materials by changing hub-motor weights at various loading conditions. The nature of vibrations with respect to natural mode frequencies are found through modal analysis. Finally, the dynamic behavior of the proposed motorized wheel was examined using harmonic response analysis. Simulation results show the robustness of the proposed design and viability for real-time implementation.","PeriodicalId":43174,"journal":{"name":"International Journal of Manufacturing Materials and Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/IJMMME.2019070104","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Manufacturing Materials and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJMMME.2019070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 6
Abstract
The wheelchair is essential for people with either spinal injury, limb injury, or trauma patients. The need at present is to customize the wheelchair based on the requirements of the disabled person. The maintenance and customization of a manual wheelchair is both simple and cost-effective when compared to powered wheelchairs, which are expensive and difficult to maintain in the long run. Accordingly, in this article, an attempt has been made to bring the facilities available in a powered wheelchair into the manual wheelchair, making it affordable to common people. Feasibility of a distinct manual wheelchair rear wheel rim is examined for various hub motor weights. The rear wheel of the manual wheelchair was replaced with an in-wheel direct drive hub-motor system. The proposed wheel model was designed using CATIA – V5 and an analysis was done using ANSYS software. A structural analysis was carried out to check the reliability and durability of the proposed wheel for different materials by changing hub-motor weights at various loading conditions. The nature of vibrations with respect to natural mode frequencies are found through modal analysis. Finally, the dynamic behavior of the proposed motorized wheel was examined using harmonic response analysis. Simulation results show the robustness of the proposed design and viability for real-time implementation.