Impact of Transparency and Explanations on Trust and Situation Awareness in Human–Robot Teams

IF 2.2 Q3 ENGINEERING, INDUSTRIAL Journal of Cognitive Engineering and Decision Making Pub Date : 2022-11-16 DOI:10.1177/15553434221136358
Akuadasuo Ezenyilimba, Margaret E. Wong, Alexander J. Hehr, Mustafa Demir, Alexandra T. Wolff, Erin K. Chiou, Nancy J. Cooke
{"title":"Impact of Transparency and Explanations on Trust and Situation Awareness in Human–Robot Teams","authors":"Akuadasuo Ezenyilimba, Margaret E. Wong, Alexander J. Hehr, Mustafa Demir, Alexandra T. Wolff, Erin K. Chiou, Nancy J. Cooke","doi":"10.1177/15553434221136358","DOIUrl":null,"url":null,"abstract":"Urban Search and Rescue (USAR) missions continue to benefit from the incorporation of human–robot teams (HRTs). USAR environments can be ambiguous, hazardous, and unstable. The integration of robot teammates into USAR missions has enabled human teammates to access areas of uncertainty, including hazardous locations. For HRTs to be effective, it is pertinent to understand the factors that influence team effectiveness, such as having shared goals, mutual understanding, and efficient communication. The purpose of our research is to determine how to (1) better establish human trust, (2) identify useful levels of robot transparency and robot explanations, (3) ensure situation awareness, and (4) encourage a bipartisan role amongst teammates. By implementing robot transparency and robot explanations, we found that the driving factors for effective HRTs rely on robot explanations that are context-driven and are readily available to the human teammate.","PeriodicalId":46342,"journal":{"name":"Journal of Cognitive Engineering and Decision Making","volume":"17 1","pages":"75 - 93"},"PeriodicalIF":2.2000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognitive Engineering and Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15553434221136358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 7

Abstract

Urban Search and Rescue (USAR) missions continue to benefit from the incorporation of human–robot teams (HRTs). USAR environments can be ambiguous, hazardous, and unstable. The integration of robot teammates into USAR missions has enabled human teammates to access areas of uncertainty, including hazardous locations. For HRTs to be effective, it is pertinent to understand the factors that influence team effectiveness, such as having shared goals, mutual understanding, and efficient communication. The purpose of our research is to determine how to (1) better establish human trust, (2) identify useful levels of robot transparency and robot explanations, (3) ensure situation awareness, and (4) encourage a bipartisan role amongst teammates. By implementing robot transparency and robot explanations, we found that the driving factors for effective HRTs rely on robot explanations that are context-driven and are readily available to the human teammate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
透明度和解释对人-机器人团队信任和情境意识的影响
城市搜索和救援(USAR)任务继续受益于人机团队(hrt)的结合。USAR环境可能是模糊的、危险的和不稳定的。将机器人队友整合到USAR任务中,使人类队友能够进入不确定的区域,包括危险区域。为了使hrt有效,理解影响团队效率的因素是相关的,比如有共同的目标、相互理解和有效的沟通。我们研究的目的是确定如何(1)更好地建立人类信任,(2)确定机器人透明度和机器人解释的有用水平,(3)确保态势感知,以及(4)鼓励团队成员之间的两党合作。通过实现机器人透明度和机器人解释,我们发现有效hrt的驱动因素依赖于情境驱动的机器人解释,并且人类队友很容易获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
21
期刊最新文献
Is the Pull-Down Effect Overstated? An Examination of Trust Propagation Among Fighter Pilots in a High-Fidelity Simulation A Taxonomy for AI Hazard Analysis Understanding Automation Failure Integrating Function Allocation and Operational Event Sequence Diagrams to Support Human-Robot Coordination: Case Study of a Robotic Date Thinning System Adapting Cognitive Task Analysis Methods for Use in a Large Sample Simulation Study of High-Risk Healthcare Events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1