Impact of volumetric system design on compressor inlet conditions in supercritical CO2 cycles

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of the Global Power and Propulsion Society Pub Date : 2020-09-09 DOI:10.33737/JGPPS/140118
A. Hacks, S. Schuster, D. Brillert
{"title":"Impact of volumetric system design on compressor inlet conditions in supercritical CO2 \ncycles","authors":"A. Hacks, S. Schuster, D. Brillert","doi":"10.33737/JGPPS/140118","DOIUrl":null,"url":null,"abstract":"The paper aims to improve the understanding of the dependency of compressor inlet conditions close to the critical point in supercritical CO2 (sCO2 ) cycles on different volumetric cycle designs. The compressor inlet conditions are fixed by the specific static outlet enthalpy of the main cooler and the static pressure determined by the mass of CO2 in the closed cycle. While in a previous study the authors analyzed effects on the compressor inlet conditions with respect to the specific static enthalpy in the pseudocritical region for constant inlet pressure, this paper focuses on the influence of the volume of the heater and cooler. The analysis is based on experimental observations from two different experimental sCO2 cycles, the SUSEN loop and the HeRo loop. The change of compressor inlet pressure upon change of the cooling power is substantially different and caused by the different volumetric design of the cycles. A simple model based on the volumes of the hot and cold sections in the cycle is developed to understand the dependency of compressor inlet conditions on the volumetric design. In terms of the volumetric design of the cycle, the paper will improve the knowledge of the challenges in stable compressor operation close to the critical point.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/JGPPS/140118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The paper aims to improve the understanding of the dependency of compressor inlet conditions close to the critical point in supercritical CO2 (sCO2 ) cycles on different volumetric cycle designs. The compressor inlet conditions are fixed by the specific static outlet enthalpy of the main cooler and the static pressure determined by the mass of CO2 in the closed cycle. While in a previous study the authors analyzed effects on the compressor inlet conditions with respect to the specific static enthalpy in the pseudocritical region for constant inlet pressure, this paper focuses on the influence of the volume of the heater and cooler. The analysis is based on experimental observations from two different experimental sCO2 cycles, the SUSEN loop and the HeRo loop. The change of compressor inlet pressure upon change of the cooling power is substantially different and caused by the different volumetric design of the cycles. A simple model based on the volumes of the hot and cold sections in the cycle is developed to understand the dependency of compressor inlet conditions on the volumetric design. In terms of the volumetric design of the cycle, the paper will improve the knowledge of the challenges in stable compressor operation close to the critical point.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超临界CO2循环中容积系统设计对压缩机入口条件的影响
本文旨在提高对超临界CO2 (sCO2)循环中接近临界点的压缩机进口条件对不同容积循环设计的依赖性的理解。压缩机进口条件由主冷却器的特定静态出口焓和封闭循环中CO2的质量决定的静压确定。在之前的研究中,作者分析了在恒定进口压力下,准临界区域的比静态焓对压缩机进口条件的影响,而本文主要关注加热器和冷却器体积的影响。该分析基于两个不同的实验sCO2循环,SUSEN循环和HeRo循环的实验观测。由于循环容积设计的不同,压缩机进口压力随冷却功率的变化有很大的不同。建立了一个基于循环中冷热段体积的简单模型,以理解压缩机进口条件对体积设计的依赖关系。在循环容积设计方面,本文将提高对接近临界点的压缩机稳定运行挑战的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
期刊最新文献
Thermodynamic performance study of simplified precooled engine cycle with coupling power output Direct multi-fidelity integration of 3D CFD models in a gas turbine with numerical zooming method A novel performance adaptation method for aero-engine matching over a wide operating range Swirling flow field reconstruction and cooling performance analysis based on experimental observations using physics-informed neural networks Flow physics during durge of an axial-centrifugal compressor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1