Meng Zhang , Huazhao Liang , Zhongju Wang , Long Wang , Chao Huang , Xiong Luo
{"title":"Damaged apple detection with a hybrid YOLOv3 algorithm","authors":"Meng Zhang , Huazhao Liang , Zhongju Wang , Long Wang , Chao Huang , Xiong Luo","doi":"10.1016/j.inpa.2022.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes an improved You Only Look Once (YOLOv3) algorithm for automatically detecting damaged apples to promote the automation of the fruit processing industry. In the proposed method, a clustering method based on Rao-1 algorithm is introduced to optimize anchor box sizes. The clustering method uses the intersection over the union to form the objective function and the most representative anchor boxes are generated for normal and damaged apple detection. To verify the feasibility and effectiveness of the proposed method, real apple images collected from the Internet are employed. Compared with the generic YOLOv3 and Fast Region-based Convolutional Neural Network (Fast R-CNN) algorithms, the proposed method yields the highest mean average precision value for the test dataset. Therefore, it is practical to apply the proposed method for intelligent apple detection and classification tasks.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 2","pages":"Pages 163-171"},"PeriodicalIF":7.7000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317322000889/pdfft?md5=a0d3fa53ef8963c534a09dd73a7e6e23&pid=1-s2.0-S2214317322000889-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an improved You Only Look Once (YOLOv3) algorithm for automatically detecting damaged apples to promote the automation of the fruit processing industry. In the proposed method, a clustering method based on Rao-1 algorithm is introduced to optimize anchor box sizes. The clustering method uses the intersection over the union to form the objective function and the most representative anchor boxes are generated for normal and damaged apple detection. To verify the feasibility and effectiveness of the proposed method, real apple images collected from the Internet are employed. Compared with the generic YOLOv3 and Fast Region-based Convolutional Neural Network (Fast R-CNN) algorithms, the proposed method yields the highest mean average precision value for the test dataset. Therefore, it is practical to apply the proposed method for intelligent apple detection and classification tasks.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining