Multiparameter estimation of continuous-time quantum walk Hamiltonians through machine learning

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY AVS quantum science Pub Date : 2022-11-10 DOI:10.1116/5.0137398
I. Gianani, C. Benedetti
{"title":"Multiparameter estimation of continuous-time quantum walk Hamiltonians through machine learning","authors":"I. Gianani, C. Benedetti","doi":"10.1116/5.0137398","DOIUrl":null,"url":null,"abstract":"The characterization of the Hamiltonian parameters defining a quantum walk is of paramount importance when performing a variety of tasks, from quantum communication to computation. When dealing with physical implementations of quantum walks, the parameters themselves may not be directly accessible, and, thus, it is necessary to find alternative estimation strategies exploiting other observables. Here, we perform the multiparameter estimation of the Hamiltonian parameters characterizing a continuous-time quantum walk over a line graph with n-neighbor interactions using a deep neural network model fed with experimental probabilities at a given evolution time. We compare our results with the bounds derived from estimation theory and find that the neural network acts as a nearly optimal estimator both when the estimation of two or three parameters is performed.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0137398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

The characterization of the Hamiltonian parameters defining a quantum walk is of paramount importance when performing a variety of tasks, from quantum communication to computation. When dealing with physical implementations of quantum walks, the parameters themselves may not be directly accessible, and, thus, it is necessary to find alternative estimation strategies exploiting other observables. Here, we perform the multiparameter estimation of the Hamiltonian parameters characterizing a continuous-time quantum walk over a line graph with n-neighbor interactions using a deep neural network model fed with experimental probabilities at a given evolution time. We compare our results with the bounds derived from estimation theory and find that the neural network acts as a nearly optimal estimator both when the estimation of two or three parameters is performed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的连续时间量子行走哈密顿算子的多参数估计
在执行从量子通信到计算的各种任务时,定义量子行走的哈密顿参数的表征是至关重要的。在处理量子行走的物理实现时,参数本身可能无法直接访问,因此,有必要找到利用其他可观察对象的替代估计策略。在这里,我们使用具有实验概率的深度神经网络模型在给定进化时间对具有n个邻居相互作用的线图上的连续时间量子行走的哈密顿参数进行多参数估计。我们将我们的结果与估计理论得到的界进行了比较,发现当进行两个或三个参数的估计时,神经网络都是一个接近最优的估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
期刊最新文献
Effects of multi-photon states in the calibration of single-photon detectors based on a portable bi-photon source. Sub-nanosecond coherent optical manipulation of a single aromatic molecule at cryogenic temperature Single-photon-based clock analysis and recovery in quantum key distribution Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions Estimation of the number of single-photon emitters for multiple fluorophores with the same spectral signature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1