Eco-driving at signalized intersections: a parameterized reinforcement learning approach

IF 3.3 2区 工程技术 Q2 TRANSPORTATION Transportmetrica B-Transport Dynamics Pub Date : 2023-05-22 DOI:10.1080/21680566.2023.2215957
Xia Jiang, Jian Zhang, Dan Li
{"title":"Eco-driving at signalized intersections: a parameterized reinforcement learning approach","authors":"Xia Jiang, Jian Zhang, Dan Li","doi":"10.1080/21680566.2023.2215957","DOIUrl":null,"url":null,"abstract":"This paper proposes an eco-driving framework for electric connected vehicles (CVs) based on reinforcement learning (RL) to improve vehicle energy efficiency at signalized intersections. The vehicle agent is specified by integrating the model-based car-following policy, lane-changing policy, and RL policy, to ensure the safe operation of a CV. Subsequently, a Markov Decision Process (MDP) is formulated, which enables the vehicle to perform longitudinal control and lateral decisions, jointly optimizing the car-following and lane-changing behaviours of the CVs in the vicinity of intersections. Then, the hybrid action space is parameterized as a hierarchical structure and thereby trains the agents with two-dimensional motion patterns in a dynamic traffic environment. Finally, our proposed methods are evaluated in SUMO software from both a single-vehicle-based perspective and a flow-based perspective. The results show that our strategy can significantly reduce energy consumption by learning proper action schemes without any interruption of other human-driven vehicles (HDVs).","PeriodicalId":48872,"journal":{"name":"Transportmetrica B-Transport Dynamics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica B-Transport Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21680566.2023.2215957","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes an eco-driving framework for electric connected vehicles (CVs) based on reinforcement learning (RL) to improve vehicle energy efficiency at signalized intersections. The vehicle agent is specified by integrating the model-based car-following policy, lane-changing policy, and RL policy, to ensure the safe operation of a CV. Subsequently, a Markov Decision Process (MDP) is formulated, which enables the vehicle to perform longitudinal control and lateral decisions, jointly optimizing the car-following and lane-changing behaviours of the CVs in the vicinity of intersections. Then, the hybrid action space is parameterized as a hierarchical structure and thereby trains the agents with two-dimensional motion patterns in a dynamic traffic environment. Finally, our proposed methods are evaluated in SUMO software from both a single-vehicle-based perspective and a flow-based perspective. The results show that our strategy can significantly reduce energy consumption by learning proper action schemes without any interruption of other human-driven vehicles (HDVs).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信号交叉口的生态驾驶:一种参数化强化学习方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportmetrica B-Transport Dynamics
Transportmetrica B-Transport Dynamics TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
5.00
自引率
21.40%
发文量
53
期刊介绍: Transportmetrica B is an international journal that aims to bring together contributions of advanced research in understanding and practical experience in handling the dynamic aspects of transport systems and behavior, and hence the sub-title is set as “Transport Dynamics”. Transport dynamics can be considered from various scales and scopes ranging from dynamics in traffic flow, travel behavior (e.g. learning process), logistics, transport policy, to traffic control. Thus, the journal welcomes research papers that address transport dynamics from a broad perspective, ranging from theoretical studies to empirical analysis of transport systems or behavior based on actual data. The scope of Transportmetrica B includes, but is not limited to, the following: dynamic traffic assignment, dynamic transit assignment, dynamic activity-based modeling, applications of system dynamics in transport planning, logistics planning and optimization, traffic flow analysis, dynamic programming in transport modeling and optimization, traffic control, land-use and transport dynamics, day-to-day learning process (model and behavioral studies), time-series analysis of transport data and demand, traffic emission modeling, time-dependent transport policy analysis, transportation network reliability and vulnerability, simulation of traffic system and travel behavior, longitudinal analysis of traveler behavior, etc.
期刊最新文献
A new methodology for the real-time limited-stop bus service design problem IMGCN: interpretable masked graph convolution network for pedestrian trajectory prediction Optimal fare and headway for a demand adaptive paired-line hybrid transit system in a rectangular area with elastic demand Scenario-based robust reachability analysis for networked airport delay dynamics An environmentally-friendly optimization framework for road pricing and pavement management under public-private-partnership
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1