{"title":"UiS Subsea-Freight Glider: A Large Buoyancy-Driven Autonomous Cargo Glider","authors":"Usman Ahmad, Y. Xing, Yucong Ma","doi":"10.1115/1.4056419","DOIUrl":null,"url":null,"abstract":"\n This work presents the baseline design for the autonomous subsea vehicle capable of traveling at a lower speed of 1 m/s with an operating range of 400 km. Owing to UiS subsea-freight glider's (USFG) exceedingly economical and unique propulsion system, it can transport various types of cargo over variable distances. The primary use-case scenario for the USFG is to serve as an autonomous transport vessel to carry CO2 from land-based facilities to subsea injection sites. This allows the USFG to serve as a substitute for weather-dependent cargo tankers and underwater pipelines. The length of the USFG is 50.25 m along with a beam of 5.50 m, which allows the vessel to carry 518 m3 of CO2 while serving the storage needs of the carbon capture and storage (CCS) ventures on the Norwegian continental shelf. The USFG is powered by battery cells, and it only consumes a little less than 8 kW of electrical power. Along with the mechanical design of the USFG, the control design is also presented in the final part of the paper. The manoeuvring model of the USFG is presented along with two operational case studies. For this purpose, an LQR and PID-based control system is designed, and a detailed comparison study is also shown in terms of tuning and response characteristics for both controllers.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056419","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
This work presents the baseline design for the autonomous subsea vehicle capable of traveling at a lower speed of 1 m/s with an operating range of 400 km. Owing to UiS subsea-freight glider's (USFG) exceedingly economical and unique propulsion system, it can transport various types of cargo over variable distances. The primary use-case scenario for the USFG is to serve as an autonomous transport vessel to carry CO2 from land-based facilities to subsea injection sites. This allows the USFG to serve as a substitute for weather-dependent cargo tankers and underwater pipelines. The length of the USFG is 50.25 m along with a beam of 5.50 m, which allows the vessel to carry 518 m3 of CO2 while serving the storage needs of the carbon capture and storage (CCS) ventures on the Norwegian continental shelf. The USFG is powered by battery cells, and it only consumes a little less than 8 kW of electrical power. Along with the mechanical design of the USFG, the control design is also presented in the final part of the paper. The manoeuvring model of the USFG is presented along with two operational case studies. For this purpose, an LQR and PID-based control system is designed, and a detailed comparison study is also shown in terms of tuning and response characteristics for both controllers.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.