Research on the probability model of basic wind speed estimation in China

IF 1.3 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Wind and Structures Pub Date : 2021-06-01 DOI:10.12989/WAS.2021.32.6.587
Cheng Xiang, Airong Chen, Li Qiheng, R. Ma
{"title":"Research on the probability model of basic wind speed estimation in China","authors":"Cheng Xiang, Airong Chen, Li Qiheng, R. Ma","doi":"10.12989/WAS.2021.32.6.587","DOIUrl":null,"url":null,"abstract":"Wind speed is one of the most critical parameters in predicting structural performance under wind effects. In most of the current standards and codes, the design reference wind speed is usually determined by fitting a typical probability distribution model based on the historical wind speed data. However, a single distribution model is generally insufficient to reflect the regional differences in wind characteristics. Therefore, in this research, the optimal probability is selected to determine \nthe extreme wind speed in different regions in China based on the fourth-order linear moment method (FLMM). Firstly, several probability models for estimating extreme wind speed distribution are introduced. Then, the optimal model, as well as the relative parameters, are determined by the linear moments (L-moments) method, and the one with the minimum value of the fourth-order linear moment between the probability model and the sample is taken as the optimal distribution. Finally, the extreme wind speed of each meteorological station is estimated according to the obtained optimal distribution, and the results are \ncompared with the recorded extreme wind speed of typical metrological stations as well as that in the previous version of specification (JTG/T D60-01-2004). Compared with the traditional method that adopting a single distribution model-based wind speed estimation, the extreme wind speed obtained by the proposed method possessed higher accuracy.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/WAS.2021.32.6.587","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Wind speed is one of the most critical parameters in predicting structural performance under wind effects. In most of the current standards and codes, the design reference wind speed is usually determined by fitting a typical probability distribution model based on the historical wind speed data. However, a single distribution model is generally insufficient to reflect the regional differences in wind characteristics. Therefore, in this research, the optimal probability is selected to determine the extreme wind speed in different regions in China based on the fourth-order linear moment method (FLMM). Firstly, several probability models for estimating extreme wind speed distribution are introduced. Then, the optimal model, as well as the relative parameters, are determined by the linear moments (L-moments) method, and the one with the minimum value of the fourth-order linear moment between the probability model and the sample is taken as the optimal distribution. Finally, the extreme wind speed of each meteorological station is estimated according to the obtained optimal distribution, and the results are compared with the recorded extreme wind speed of typical metrological stations as well as that in the previous version of specification (JTG/T D60-01-2004). Compared with the traditional method that adopting a single distribution model-based wind speed estimation, the extreme wind speed obtained by the proposed method possessed higher accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国基本风速估计的概率模型研究
风速是预测风作用下结构性能最关键的参数之一。在现行的标准和规范中,设计参考风速通常是根据历史风速数据拟合一个典型的概率分布模型来确定的。然而,单一的分布模式通常不足以反映风特征的区域差异。因此,本研究选择基于四阶线性矩法(FLMM)的最优概率来确定中国不同地区的极端风速。首先,介绍了几种估计极端风速分布的概率模型。然后,采用线性矩(l -矩)法确定最优模型及相关参数,取概率模型与样本之间的四阶线性矩最小值为最优分布。最后,根据得到的最优分布估计各气象站的极端风速,并与典型气象站记录的极端风速以及JTG/T D60-01-2004版规范中的极端风速进行比较。与传统的基于单一分布模型的风速估计方法相比,该方法获得的极端风速具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wind and Structures
Wind and Structures 工程技术-工程:土木
CiteScore
2.70
自引率
18.80%
发文量
0
审稿时长
>12 weeks
期刊介绍: The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted. The main theme of the Journal is the wind effects on structures. Areas covered by the journal include: Wind loads and structural response, Bluff-body aerodynamics, Computational method, Wind tunnel modeling, Local wind environment, Codes and regulations, Wind effects on large scale structures.
期刊最新文献
Challenges and Perspectives of Wind Energy Technology Responses of a Modular Floating Wind TLP of MarsVAWT Supporting a 10 MW Vertical Axis Wind Turbine Wind Power Forecasting in a Semi-Arid Region Based on Machine Learning Error Correction Scaling Challenges for Conical Plain Bearings as Wind Turbine Main Bearings Numerical Modeling and Application of Horizontal-Axis Wind Turbine Arrays in Large Wind Farms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1