A combinatorial proof of the Gaussian product inequality beyond the MTP2 case

IF 0.6 Q4 STATISTICS & PROBABILITY Dependence Modeling Pub Date : 2021-12-23 DOI:10.1515/demo-2022-0116
{"title":"A combinatorial proof of the Gaussian product inequality beyond the MTP2 case","authors":"C. Genest, Frédéric Ouimet","doi":"10.1515/demo-2022-0116","DOIUrl":null,"url":null,"abstract":"Abstract A combinatorial proof of the Gaussian product inequality (GPI) is given under the assumption that each component of a centered Gaussian random vector X = ( X 1 , … , X d ) {\\boldsymbol{X}}=\\left({X}_{1},\\ldots ,{X}_{d}) of arbitrary length can be written as a linear combination, with coefficients of identical sign, of the components of a standard Gaussian random vector. This condition on X {\\boldsymbol{X}} is shown to be strictly weaker than the assumption that the density of the random vector ( ∣ X 1 ∣ , … , ∣ X d ∣ ) \\left(| {X}_{1}| ,\\ldots ,| {X}_{d}| ) is multivariate totally positive of order 2, abbreviated MTP 2 {\\text{MTP}}_{2} , for which the GPI is already known to hold. Under this condition, the paper highlights a new link between the GPI and the monotonicity of a certain ratio of gamma functions.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"10 1","pages":"236 - 244"},"PeriodicalIF":0.6000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2022-0116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract A combinatorial proof of the Gaussian product inequality (GPI) is given under the assumption that each component of a centered Gaussian random vector X = ( X 1 , … , X d ) {\boldsymbol{X}}=\left({X}_{1},\ldots ,{X}_{d}) of arbitrary length can be written as a linear combination, with coefficients of identical sign, of the components of a standard Gaussian random vector. This condition on X {\boldsymbol{X}} is shown to be strictly weaker than the assumption that the density of the random vector ( ∣ X 1 ∣ , … , ∣ X d ∣ ) \left(| {X}_{1}| ,\ldots ,| {X}_{d}| ) is multivariate totally positive of order 2, abbreviated MTP 2 {\text{MTP}}_{2} , for which the GPI is already known to hold. Under this condition, the paper highlights a new link between the GPI and the monotonicity of a certain ratio of gamma functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MTP2情形下高斯积不等式的组合证明
摘要在假定中心高斯随机向量X=(X1,…,XD)的每个分量=\left的情况下,给出了高斯乘积不等式(GPI)的组合证明({X}_{1} ,\ldots,{X}_{d} )可以写成标准高斯随机向量的分量的线性组合,具有相同符号的系数。X{\boldsymbol{X}}上的这一条件被证明严格弱于随机向量的密度(ÜX 1Ü,…,ÜX dÜ)\left(|{X}_{1} |,\ldots,|{X}_{d} |)是2阶的多变量全正,缩写为MTP 2{\text{MTP}}_{2},GPI已经为其成立。在这种情况下,本文强调了GPI与一定比例伽玛函数的单调性之间的新联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
A Combinatorial Proof of the Ringel–Vossieck Inequality
IF 0.9 3区 数学Bulletin of the London Mathematical SocietyPub Date : 1993-11-01 DOI: 10.1112/blms/25.6.541
Sheila Brenner
A short proof of a strong form of the three dimensional Gaussian product inequality
IF 0 3区 数学Proceedings of the American Mathematical SocietyPub Date : 2023-10-13 DOI: 10.1090/proc/16448
Ronan Herry, Dominique Malicet, Guillaume Poly
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
期刊最新文献
Joint lifetime modeling with matrix distributions On copulas with a trapezoid support When copulas and smoothing met: An interview with Irène Gijbels Mutual volatility transmission between assets and trading places Functions operating on several multivariate distribution functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1