SIW Based Cavity Backed Self-Quadplexing Slot Antenna

P. Nigam, A. Muduli, Sandeep Sharma, A. Pal
{"title":"SIW Based Cavity Backed Self-Quadplexing Slot Antenna","authors":"P. Nigam, A. Muduli, Sandeep Sharma, A. Pal","doi":"10.1590/2179-10742021v20i31213","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a low profile substrate integrated waveguide (SIW) based self-quadplexing antenna with high isolation is demonstrated for multiband wireless applications. Here the SIW based resonator cavity is integrated with an “X”-shaped resonator and formed the four quarter mode cavities having the individual microstrip feed lines. Each quarter mode cavity consists of “V”-shaped slots of different lengths; are in front to feed line and produce the four distinct resonant frequencies at 7.8 GHz, 8.5 GHz, 10.2 GHz, and 10.6 GHz, respectively. The working principle depends upon the perturbation of higher-order modes in a particular quarter mode cavity. The minimum intrinsic isolation of below than −26dB is attained between any of the two input ports by adequately modifying the antenna dimensions. Hence, a single antenna consists of four individual signals without interfering with each other, which determines the self-quadplexing property of the antenna. The proposed antenna is realized for maximum efficiency and minimum value of frequency ratio. The measured gain of the proposed antenna is 4.5 dBi, 5.28 dBi, 7.1 dBi, and 7.4 dBi at the four resonant frequencies, respectively.","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742021v20i31213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this paper, a low profile substrate integrated waveguide (SIW) based self-quadplexing antenna with high isolation is demonstrated for multiband wireless applications. Here the SIW based resonator cavity is integrated with an “X”-shaped resonator and formed the four quarter mode cavities having the individual microstrip feed lines. Each quarter mode cavity consists of “V”-shaped slots of different lengths; are in front to feed line and produce the four distinct resonant frequencies at 7.8 GHz, 8.5 GHz, 10.2 GHz, and 10.6 GHz, respectively. The working principle depends upon the perturbation of higher-order modes in a particular quarter mode cavity. The minimum intrinsic isolation of below than −26dB is attained between any of the two input ports by adequately modifying the antenna dimensions. Hence, a single antenna consists of four individual signals without interfering with each other, which determines the self-quadplexing property of the antenna. The proposed antenna is realized for maximum efficiency and minimum value of frequency ratio. The measured gain of the proposed antenna is 4.5 dBi, 5.28 dBi, 7.1 dBi, and 7.4 dBi at the four resonant frequencies, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SIW的背腔自四弯缝隙天线
摘要:本文介绍了一种基于低轮廓基板集成波导(SIW)的高隔离自四工天线,用于多波段无线应用。在这里,基于SIW的谐振腔与一个“X”形谐振腔集成,形成了四个具有单独微带馈线的四分之一模腔。每个四分之一模腔由不同长度的“V”型槽组成;分别在7.8 GHz、8.5 GHz、10.2 GHz和10.6 GHz产生四个不同的谐振频率。其工作原理依赖于特定四分之一模腔中高阶模的扰动。通过适当修改天线尺寸,在任意两个输入端口之间实现小于- 26dB的最小本征隔离。因此,单个天线由四个互不干扰的独立信号组成,这决定了天线的自四路复用特性。该天线以效率最大化和频率比最小为目标。该天线在四个谐振频率下的实测增益分别为4.5 dBi、5.28 dBi、7.1 dBi和7.4 dBi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Journal of Microwaves, Optoelectronics and Electromagnetic Applications Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
32
审稿时长
24 weeks
期刊介绍: The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.
期刊最新文献
HIF1A contributes to the survival of aneuploid and mosaic pre-implantation embryos. Assessment of the Illumination and Communication Performance of a Visible Light System in an Indoor Scenario Software-Defined Radio Applied to a Shielding Effectiveness Measurement Numerical Analysis of Plasmonic Couplers based on Metallic Lens Detection of Eyebolt Faults Using a Random Forest Ensemble Model Based on Multiple High-Frequency Electromagnetic Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1