Shailendra Kumar Sharma, Hani Taleshi Ahangari, Bernt Johannessen, Vladimir B. Golovko, Aaron T. Marshall
{"title":"Au Cluster-derived Electrocatalysts for CO2 Reduction","authors":"Shailendra Kumar Sharma, Hani Taleshi Ahangari, Bernt Johannessen, Vladimir B. Golovko, Aaron T. Marshall","doi":"10.1007/s12678-023-00821-2","DOIUrl":null,"url":null,"abstract":"<div><p>Metal clusters often exhibit superior chemical, electronic, and geometrical properties and can show exciting catalytic performance. The catalytic behaviour of the clusters is strongly affected by their size and composition, offering unique opportunities to fine-tune such materials for a specific application. In this study, atomically precise [Au<sub>6</sub>(dppp)<sub>4</sub>](NO<sub>3</sub>)<sub>2</sub>, [Au<sub>9</sub>(PPh<sub>3</sub>)<sub>8</sub>](NO<sub>3</sub>)<sub>3</sub>, [Au<sub>13</sub>(dppe)<sub>5</sub>Cl<sub>2</sub>]Cl<sub>3</sub> and Au<sub>101</sub>(PPPh<sub>3</sub>)<sub>21</sub>Cl<sub>5</sub> clusters were synthesised, characterised and their activity for electrocatalytic CO<sub>2</sub> reduction is compared. These Au clusters were deposited onto carbon paper to serve as the cathode for the electrochemical reduction of CO<sub>2</sub>. The experimental studies suggest that the clusters remain intact upon deposition on the carbon paper but undergo agglomeration during CO<sub>2</sub> electrolysis. The cluster-based catalysts demonstrated high selectivity (75%—90%) for CO production over hydrogen evolution reaction. Upon calcination, the activity of the cluster-based electrodes decreases, which can be attributed to the agglomeration of small clusters into larger bulk-like nanoparticles, as suggested by XPS, XAS and SEM.\n</p><h3>Graphical Abstract</h3><p>A series of phosphine-protected gold clusters supported on carbon paper were studied as CO<sub>2</sub>RR electrocatalysts. The CO<sub>2</sub>RR activity was dependent on their size and ligand density. Thermal annealing of the catalysts invariably lowered CO selectivity due to agglomeration of the clusters into larger nanoparticles. \n</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 4","pages":"611 - 623"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00821-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Metal clusters often exhibit superior chemical, electronic, and geometrical properties and can show exciting catalytic performance. The catalytic behaviour of the clusters is strongly affected by their size and composition, offering unique opportunities to fine-tune such materials for a specific application. In this study, atomically precise [Au6(dppp)4](NO3)2, [Au9(PPh3)8](NO3)3, [Au13(dppe)5Cl2]Cl3 and Au101(PPPh3)21Cl5 clusters were synthesised, characterised and their activity for electrocatalytic CO2 reduction is compared. These Au clusters were deposited onto carbon paper to serve as the cathode for the electrochemical reduction of CO2. The experimental studies suggest that the clusters remain intact upon deposition on the carbon paper but undergo agglomeration during CO2 electrolysis. The cluster-based catalysts demonstrated high selectivity (75%—90%) for CO production over hydrogen evolution reaction. Upon calcination, the activity of the cluster-based electrodes decreases, which can be attributed to the agglomeration of small clusters into larger bulk-like nanoparticles, as suggested by XPS, XAS and SEM.
Graphical Abstract
A series of phosphine-protected gold clusters supported on carbon paper were studied as CO2RR electrocatalysts. The CO2RR activity was dependent on their size and ligand density. Thermal annealing of the catalysts invariably lowered CO selectivity due to agglomeration of the clusters into larger nanoparticles.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.