REDUCED-IMPACT LOGGING BY ALLOCATING LOG-DECKS USING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM IN WESTERN AMAZON

IF 0.6 4区 农林科学 Q4 FORESTRY Revista Arvore Pub Date : 2021-05-28 DOI:10.1590/1806-908820210000006
Marcos Antonio Isaac Júnior, B. Barbosa, L. R. Gomide, N. Calegário, E. O. Figueiredo, L. O. Moras Filho, E. D. A. Melo, D. Dantas
{"title":"REDUCED-IMPACT LOGGING BY ALLOCATING LOG-DECKS USING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM IN WESTERN AMAZON","authors":"Marcos Antonio Isaac Júnior, B. Barbosa, L. R. Gomide, N. Calegário, E. O. Figueiredo, L. O. Moras Filho, E. D. A. Melo, D. Dantas","doi":"10.1590/1806-908820210000006","DOIUrl":null,"url":null,"abstract":"ABSTRACT To reduce the damage caused by logging in the Amazon rainforest, new metaheuristics have been implemented and tested to ensure the sustainability of this economic segment. Therefore, this study aimed to compare alternatives for road sizing and log deck allocation. In a forest management unit, the skidding to log decks was evaluated in two different areas. To determine the skidding/log deck relation, georeferenced points were generated equally spaced every 50 m. In area 1, the Integer Linear Programming (ILP) model and the Multi-Objective Evolutionary Algorithm (MOEA) were compared. In area 2, only the MOEA was considered. In both areas, these models were also compared to the current planning used in the forest management unit. Solutions were then generated to identify the best management alternative. In both areas, the MOEA showed greater efficiency regarding the processing time, as well as the reduction of log decks number and the road sizing. The multi-objective evolutionary approach assists the decision-making process, due to the presentation of alternatives based on Pareto-optimal solutions, making the choice more flexible and well supported.","PeriodicalId":21214,"journal":{"name":"Revista Arvore","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Arvore","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1806-908820210000006","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT To reduce the damage caused by logging in the Amazon rainforest, new metaheuristics have been implemented and tested to ensure the sustainability of this economic segment. Therefore, this study aimed to compare alternatives for road sizing and log deck allocation. In a forest management unit, the skidding to log decks was evaluated in two different areas. To determine the skidding/log deck relation, georeferenced points were generated equally spaced every 50 m. In area 1, the Integer Linear Programming (ILP) model and the Multi-Objective Evolutionary Algorithm (MOEA) were compared. In area 2, only the MOEA was considered. In both areas, these models were also compared to the current planning used in the forest management unit. Solutions were then generated to identify the best management alternative. In both areas, the MOEA showed greater efficiency regarding the processing time, as well as the reduction of log decks number and the road sizing. The multi-objective evolutionary approach assists the decision-making process, due to the presentation of alternatives based on Pareto-optimal solutions, making the choice more flexible and well supported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多目标进化算法的西亚马孙地区低影响测井分配
为了减少砍伐对亚马逊雨林造成的破坏,新的元启发式方法已经实施和测试,以确保这一经济部门的可持续性。因此,本研究旨在比较道路尺寸和原木甲板分配的替代方案。在一个森林管理单位,在两个不同的地区评估了滑向原木甲板的情况。为了确定滑动/日志甲板关系,每隔50米生成等距的地理参考点。在区域1中,比较了整数线性规划(ILP)模型和多目标进化算法(MOEA)。在区域2中,只考虑了MOEA。在这两个领域,还将这些模式与森林管理单位目前使用的规划进行了比较。然后生成解决方案,以确定最佳的管理方案。在这两个领域,MOEA在处理时间、原木甲板数量和道路尺寸方面都表现出了更高的效率。多目标进化方法有助于决策过程,由于基于帕累托最优解的备选方案的呈现,使选择更加灵活和良好的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Arvore
Revista Arvore FORESTRY-
CiteScore
1.00
自引率
0.00%
发文量
32
审稿时长
4-8 weeks
期刊介绍: A Revista Árvore é um veículo de comunicação científica da Sociedade de Investigações Florestais – SIF. O jornal é de acesso gratuito, revisado por pares, que publica bimestralmente trabalhos científicos originais no campo da Ciência Florestal. As áreas temáticas para publicação são: Ambiência e Conservação da Natureza, Manejo Florestal, Silvicultura e Tecnologia da Madeira e Utilização de Produtos Florestais. A política editorial visa manter alta conduta ética em relação à publicação e aos seus funcionários, rigor na qualidade dos artigos científicos, seleção de revisores qualificados, respeito profissional aos autores e processo de tomada de decisão imparcial. A Revista Árvore publica artigos apenas em inglês. Artigos de revisão podem ser publicados se houver uma discussão relevante resumindo o estado da arte sobre o assunto. A revisão estrita da literatura não é aceita.
期刊最新文献
MIXED MODELS FOR NUTRIENTS PREDICTION IN SPECIES OF THE BRAZILIAN CAATINGA BIOME EMERGENCE, INITIAL GROWTH, AND SEEDLING QUALITY OF Eremanthus incanus: SUBSIDIES FOR GENETIC BREEDING AND CONSERVATION VEGETATIVE RESCUE AND PROPAGATION OF NATIVE Ilex paraguariensis POPULATIONS IN SANTA CATARINA STATE, BRAZIL EFFECT OF pH ON THE ANTIBACTERIAL AND ANTIFUNGAL ACTIVITY OF WOOD VINEGAR (PYROLIGNEOUS EXTRACT) FROM EUCALYPTUS CHARACTERISTIC STRENGTHS IN THE COMPRESSION AND IN THE STATIC BENDING AS PARAMETERS TO ESTIMATE CHARACTERISTIC SHEAR STRENGTH FOR TIMBER DESIGN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1